B AILEY BRIDGE

Change 1
Headquarters
Department of the Army
Washington, DC, 15 August 1991

M2 BAILEY BRIDGE

```
1. Change FH 5-277, 9 May 1986, as follows;
```

Remove old parge
1 through 6
31 through 34
41 through 46
51 through 56
57 through 58
61 through 64
93 through 100
155 through IS 301
Authentication page

Insert new page
1 through 6
31 through 34
41 through 46
51 through 56
56-1 thraugh 56-2
57 through 58
61 through 64
93 through 100
155 through 158
301
Authentication page

```
2. File this transmittal sheet in front of the publication.
```

DISTRIBUTION RESTRICTION: Approved for public release; distribution is unlimited.

CONTENTS

Liat of Flgarea Lhal of Table: Preface	$\begin{gathered} \text { Perg } \\ \text { iv } \\ \text { kifi } \\ \text { rvif } \end{gathered}$
PART ONE - THE BAILEY M2 BRIDGE	
Chapter I - HibTORY AND ЏRE OF THE DRIDGE	2
Chapter 2 - HAELC EQUIPIENT	5
Bridge Farta	6
Evertian Bquipment	15
Eridging Tract Loadr	19
Chapter S- Plandinc and orghelization	31
	36
Length, Truen Type, and Grillage Type	36
Launching Noat	49
Heolkers and dacke	51
Ramp Fiequirements	62
Example Field Deaign Probleun	5
Hridge Llansification	56
Chapter ${ }^{\text {b - EOLLESR LAYOUT }}$	67
Chmptnri $=$ ARgEMRLY OR SINTILE.ETORY RRIMEES	6.3
laurching Noat	04
Aseembly of lowble Sinity Bridue	11
Asganubly at Truplasingla Friga	83
Launching, Farkiog Dawn, and Tampang	85
Reiaforcing Hridge and Converting Bride	91
Chaplar T - ABSEMBLY OF DOUBLE-STORY BELDOES	64
The Doutba-[poulbe Bridge	04
The Triple Doublc Bridge	97
Laumehing and Suckiog 1Mum	988
	09
	102
Launctiog tiose and Ureibead Eraciag	108
The Duruble-Triule Budere	107
7'the Triple Triple Aridge	107
	109
	112
Chapter 10 - TWO-LaNE THEOUCH-TYPE BRIDEE	114

CONTENTS - continned

Pace
PART TWO- BPECLAL ABSEMBLIES
Chapter 11 - EXTEA-WIDENED BAILEY BRIDGE MA 129
Component Parta 180
Ansembly and lanarbiar of Simglestory Aridgea 132
Asaembly and Lamofing of Dorabier 5tmy Eridicen 135
Anembly and Emuathing of Triple-Stary Erider 189
Grillager and Fimpa Supporta 130
Ctapter 12 - DECE.TYPE HR1DGES 139
Chapler 13 - RAILTAY HFUDGES 144
Cbppter 14 -REINFORCED BRIDGES 155
Chopter 10 -CABLE REINPORCEMENT SET 159
[1ugeription apd Uwo 159
Compopent 167
Inipillotipn apd Disenntling 177
Oparation Uader Unurual Conditiona 187
Dperntor's nod Oreamizational Meintenamin 187
ghipment and Limited Stornge 189
Chapter 16 - BRIDGER ON PIERS 100
 191)
contianora-Span Bridge 1中8
Cantilevet-9pan Bndut 208
Cthplex 17 - PANEL CRIB IPIERB AND TOPFERS 210
Cinpley It - SPECIAL LAUNCHING MRTHODA 255
Chepter to - LAtINCHINC BY BINGLE GLEDERS 244
Cheṕter '20 - HRIDGES ON BARGES 257
Clapter 21 - BRIDGE MALNTENANCE AND REPAIR 275
Chapter 28 - EXPRDIENT USES GF PANELBRIDGE EGIHPIEENT 286
Chapter 23 - DEMOLITION OF ERIDGE AND PARTS 2
Appandix A - OVRREITED TABLES foce purchet anaide back colers 297
Appeadix B = CABLE REINFORCEMENT BET 82
Appendix C - URE OF SALE CHARTY IN DETERMINANG 3
Glomary 251
Reforencen 365
[ndex 356

MAIN TEXT

Figare	Titla	Prige
239	Trumil land nomber 2-lamatbiag nowe load on 5-ton truek	21
246	Truck lamd number 3-panel load on 5-wa 4ruck	22
$2-11$	Trailer hand numaber t-branmoan doad un diun toolsiep traler	20
$2-42$	Track hand number 5-ulutk luad on 5-wn lruck	24
$2 \cdot 43$		25
244	Trailer load number i-foarwolly liged on 4.40 m bolatar trailer	26
$2 \cdot 45$	Truck load number i-aparad load an F-ion truck	27
$2 \cdot 46$	'Truck load numbey 9 -aymiandibrecing land an trion truck	28
$2{ }_{2}$	Вhy loid	\$0
y-1	Layurt of hriderife \#quiprosal at eite	32
4-1	Mesturing the gip with prepared and unperparad abutaninta	31
4-29	Safoty equbeck for propured and umprepared abutaitito	4
4-3	Rorlumg nolker and buare plate at lbe ehod of bondge	88
4-4		39
4.5	Type 1 crillage	40
4.6	Type 2 crillage	40
4.7	Typa 3 cridmge	41
+ 1 B	Trpe 4 grillage	41
4.3	Type $\mathrm{S}_{\text {griliage }}$	42
+-10	Type 5 crillace	44
+1]	Typd ${ }^{\text {grilleg }}$	41
1-12	Uplurbed alelaton lanching proee	40
4-13	Supprart for and af remp	52
4-14	Isvel ithiood temp for loade of 45 tome or owet	53
4.15	TD pantl bridet, Bailey type H2	53
4.18	Famp pedentala in place in lwh-bey ramp	54
$4 \cdot 17$	Protile of brider alte teximple problam	55
5.1	Sangle Irimo on rochine milar	58
-2	Laleral apecing of rocking pollmenone tet	58
5-3	Donble truet on two rocking rallers	35
5-4	[ataral spacing of tocking rollern-twe sets	$6{ }^{64}$
5-5		80
S-6		80
57		80
ins	Uee of base plate agd beannce mider tinglo, double, and dripletruse bridgey	61
59	Ead ports reating un liearinge int doubletrman bridge	61
5.10	Inan ind protile viene of atypical taller layour for a dripdetruat or mulhatary brige	62
6-1	Luunchilag hose	64
6-4	Lautrehing noses, tritinl bay namembled	606
6-3	Launching nome, ecosd bay connected wriaitiad dut	${ }_{4} 8$
6.4		488
6-5	Yroud af tauncbiag nane with sieel picket ingerterd in tollars do prevend gavememt	6.4
4-ib		70
6.7		T1
8-B		72

Figure	Tinle	Page
6－9		T ${ }^{5}$
8－14	Fhrat bay，DS，aumembly－secoud buy of pancla added	14
6－1］		7\％
6． 12		78
6－1．3	Fimat hay，DS，anambly sway bracen，takete，and loraciaug frimies edded in mecoud bay	77
$6 \cdot 14$	Firat hay， DS ，annembly－first bay braces tightund and bay decked	$7{ }^{4}$
6.5	Ansembly of remsinder or US bride－utringere ponitinned in eeonnd hay	－4
6． じ		xir
6－17	hay y	al
6．14	Footwalk	820
81.9	Anwembly of TS bridye	N4
6－20		85
6－21	Tiof platee lotwean ceond and thied trubeen and fhurt purel pios in end ponta in TS bridge	85
E－2	Poatinte of woslera	86
621	Punbior bridge dues cap	沸
624		M 7
6－25	Guiding le unchung noion motr menking tollera	89
$5-26$	View of fackamg npcration ahowing tha placoment of the jock，jack vhue，and bearing	68
6－2\％	Erd of hridge jacked domen un bearinga	51
O28	Single boy ramp tumpletely decked	¢
6.28		91
6－36		91
$5-31$	SS bridey with foolwalk	82
frif2	truan	98
6．31	Inuerting ouler trve日	93
6－31		9 j
7－1	Ansemily tif DD bridre	85
72		180
7%		97
7.1	Asvembly of 1iryt hay af Tis bridge	9
7.5	Werme buliduatr to launch bridge	99
？ B		101
72	Chard jack in positiun un wp churd	1001
7K	Converting DS to DLb brisge an puentum	101
＊． 1		102
H_{2}	Trapleskery bridge with underslugatatory	IIT
$8-3$	L Acopon of bendgo parta in averhend hrocung of DT kridga	105
H－4		106
85	Anembly and launchins of incoraplete＇IT＇brudre	109
86	Underaluns pantla on Tocklies ruldera on first buy of pier	110
87		111
91		11 1 \％
1／24	Bridge with painted ceaterlion and paocl poata te nid in cight driving	113

Mipure	Thie	Hate
10-1		114
10-2		116
10-3	[13. Did tau-lsme bridge	1116
10-4	TS-Tly iwo-latie hridpe	115
10-5	TS-Qty iwis-lata bridge	116
1 156	If[J.CEtwo.tona bridg*	17\%
107	少TSTtwelane bridge	117
15-3	Trancinin eextibg in TR-TD bridgas	119
151-9		120
101.10		121
10.11	Ovarbead view oftypical latnching neac for 160,154 -. and 180 -foot [bD-QD bridges	12]
10.12		129
10.13		125
11.1	Ceann acclain of extru-widrand Hailey bridge bl3	128
112	Travearn, M3	137
11.3	\|leadiens panel piat, M3	130
114	Falcer, M\%	130
11.5	Fibbeand busk, M3	131
11.6	Eracing EThmer, Md	131
11-7	Eimmp pedestai. Mis	131
11-8	Eodler layput	132
11-9	l'osstrun of hearingr and hase plates	135
11-10	Hemp unpport fir clang fill hridjef	138
12-1	Liandurd two lane, dectriype panel bridgen	179
12-4	Chebile of daminated timber dock on n turouluc, deck-tspe panel bridg*	141
12-3	Letatle of dawesed timber decti on a twoilame, deck-type parel bridge	142
12-4	End henrioga for decketype pancl bridgen, with mod pithout end posin	14.3
12.3	Junctish of two deck spang an an inletaediale pier; timber bent supporin the deating betwech anda of npmo	143
1311	Kanlusy clearance diugiame Jar Hz tbruaghetype paral bringen	145
13.2	Dingram of standsrd and modified Cuoperis E.7t fotdings	145
Jikid	T'kriugh type paned Yulway briduce	147
13.4		147
13.5		147
136		147
13.7	Fuilwuy bridke: Typer	148
13 B		130
13.4	Ftrilwny bridze: Type $\int I$	150
13.10		IN2
[3.1]	Expedient und beeringe fir deeh-panal bindga	1.
19.12		d*)
13.13]		153
13.14	End yoew of 'Th rimbixnton hıghungy.roilway hridsa	15is
13-1.5	Ead riem of Tib glonu 30 railwpy hridgr:	154
13.16	End wiew of ans.truad decte railway bridgo	154
1:31.17	Eind wipw in topur trann deck talwny bridge	154

tigure	Tide	Prgc
14－1	Bupplementary chorin and muditied hracing itanueg	156
1E－1	Span juaction puata meplacing ntandard end pont on Eailey bridge with calde reiafarcement met	161
$15-2$	Cable seinforceatent aet yertical posta inotalled on Bailey bridge	161
11.3	Cablekentionung \＃tosmbly wilh eitetric hydruslic power unic	162
］E－4		idit
15.5	of any mudel of j ton thetical dump rruct	tet
Ls－li		265
15.7		166
15 H		167
15－4	Fostronsectioa fixture	368
25－10	Brareconmection fixtore	169
16－11	Lonigivilinal and tranivorte brobet	1형
$15-12$		189
16－13	Chord plata	169
15－14		170
15－15	Cubla nusemblies inatalied on cable reeln．with cable reed eupporta	171
15－16	Lefithand cablecounemion beam	171
じ－1	Malfrable retaines	1う1
18－16	Haif－able retaints plated betwean the cablecoanection beariog andicre and the cotio buthote	171
15－19		172
15.20		172
（5－2）		175
$15-22$	Bndige anit racker	173
15－23	Bridga meat rockers in place between alsadard bearing and cmblecoanediom beam（tenuioning end urily）	174
15－24	Pullrod anembly with fod，cod－tocable coupling，loct bolt mod ucrew，and secrated nuit	
1505		179
18．25	Eolte in cable reinfurusitut met	175
15．25	Jackige lay in cable reinforvemenh met	175
15.88	Span imaction pooth	176
15－29		176
15，30		178
15－3］	Cinwinding ceble from cable tael and inataling sapa leahing＊	179
15－32	Jecking up end wf M2 pared tridge to inamblableconnetion beam	180
15－34	Positionitar cablecunmection beam under apun junation poata	191
10．24	M2 Buikey bridgry jacked down on bridge besriag plave	282
15－34	Cable art retainine pult roul in ctableconaectioh leam	183
15－39	Cublekentive uape	185
15－37		186
15－38		146
16－1	Continumun．panel bridga nupported on daanaged mannsty prer and a pandicrib pier	190
15－2		191
］6－3	Fanel bridges aupported at varivud typen of piers	192
J6－4	Bearinge un pier al adjacent enda of two imbermediate spana	192
16－6		192

Figure： Title Page
I＊\％иy yha awpparied on a cummon pier
 193202tumhor ar pie bend；stew buariny phates far steating cack line of trusaca
 1×3
corbels und tenex branteng acilert to pmuide a jacking piokform
arcotie ur prond14년
193
 18！
d
ficandard milany curven125
Farg 2．1．and 4 coubshueled fruin ende of bidge cantilevered unt frum each lank1400
Ricker be－
 21）Iand jurfetpon lett
202
Luvechthg a continucus apan bridge over inlermedpata fupporis with launching nove 203
 205
 205
Contilever coantructaós2076
2019
Lasda and rearelian Sula
Twa coolunvuwe pabil bridgen with parel crib piera on pile pleri 2115
 216
 212
 213 211

Mry junction s：hese 215
dimationa limik 116
，lurnation－Jink beér riblic 216
Chord cleary 257
 217
C＇rib cayetl］ 21H
Ciritr berping under crib capsil 218
t＇ibly lating 219
 218
foxad bearing
dith braring used with ucianderd thatiag co pauvirle rocker bewring 415
Binglestory ancla－bay crih with pancla harimuntel 200
 24 20
Bridge broken nyer double to triplestery duulblehey trib with pasels hath horizanial and vertiond 2－21
Single by lriple atory double bay with panely t＇erbiral．rononyous bridge unth macher boring at baac of trab 22.1
Sirale Lo truple－atory dumble－bay with paimele vartical，with hrioige broker ater erib 221
Founc－to five－niory tent with pantele verpeal with heidgr：hroken aver cib 24
Cbose－up view of bracl are＇II e guandrujib－truan arih pier 268 296

Figare

Title

Pre

Fanel crib perts with enpedient flat tope and reckar bind ge bearing under rontinuous bridge 225
Expedient coanection between horizontal and vertical papela in a panel crib pict UR
Espedient paned crib pier with parela tranaverne to anin of bridge \quad 2!29
Cellular lype punut pib yier
Sway-brace crowa braciag in two.atory panel crid piet
40
cxpeduent cole tryaring in threstor pact
231
-
Hurtiog roders ta poention on top of panel krib pater before iaubchag bindge $\quad 2,02$

hoalling platiarm romentermsigith
2:56

6fagh of lavorchirg intartandiate apan ty Smaction \quad 242

wide enough to faunch newn apan compiete!
Nocenpary cleurances far launching parel bridge from exiating bridge i44
Intermediate landiak bay of tlouting paned bridye in lidah water

Arranyement of raskiag rollere under ef paptefrait wirder 24?

launchang a mígle truad girder with a high line 254
Jacke under fort trani girder using an equalizing beam
Kkidding a giveler jnia place by prying with pincbbart

Nlating bave padel bide mo bea
254
Fuarlbridye bit ayain
Typical

Suncial connecting pobas

Patall.bFidge drew ngak
Adepting latgar far gunwale logeding

Expedicnitackiog crib with
Experient inckion crih, with groundel bat
Sectian of timber rrillage in burge
2s
Preparation of intermediale landing bay pier
Beaing ander upeeisl tonnetting put o「 yariable landiag bay
(2n
if syan suited tor aver 1raff

Figume

ritle

Hega
Panel inwer and hote apan conenceted and pinned Eox bridyt trafficy）
 274

274
274
Typical barkerult 277
Effective lengit of weld（an enely end of apline plotur 84
Typical welling rupsite on panyichurits 255
 245
 290
Cuntroctrax \＆shig－huilding gantry from pancl bridge parta －＋14
 25%
［hedrurcing of asaemblel bridge，with piacement of chuwes br cul panel in mean pirder （3）
 －2． $\mathrm{K} \cdot$pantels3 解
arrape top fiangeo mitan－soms

APPENDIX B

Hayic mpup itema 341
Servicing bydtalalic power unit tencervir 325
Servielny hand driven hydrawic ram purp reaervuir 22：
 敃突
An！nem bly
Pint ancmbly cohnection Ehx burus，brocee，fild riphitad mith 332
Tramaviere braces Aili引
Cableronnextion bermu nad rolated papce Jil3
 334
Mantul hyrlyaulier．pu mp anammily 435
Spue jumertuin pooth 136

APPENDIX C

Figate	Tithe	1'afe
5.6	Bexding	437
c -	Problem in bending	:3sis
C. 3	Heam 「ailure	30
C-4		34.4
Cb		345
C. 5	Typical atardard clane curve thiriong	345
6.7		148
C8	Standard sinne cirver tmemarit), 4 to 1500 (apas 5 to dat)	346
$\mathrm{C} \cdot 9$	Lhajdard clags curvee imowenti, 3f la lift	S 46
c. 14		347
CH		349
C. 12	Standerd clast curvea (ahear), itf to lfal	(4)
C. ${ }^{\text {d }}$	Moment curve fot 3!-wh Iruck, 6x6, dump, Lbik	; $\mathbf{4}^{18}$
C. 14		354

MAN TEXT

Table

Thele

Wright of M2 yanal bindge in toris bet bey
Holee in parici charda and vertical.

616
 21Trock lined No. 5 -deck loat (5 -Ion truck)-12 hoode per bridge placion; 4 hoade per company)Truck load No. 9-acerchead. fracine doad is. Aon truchTruck louid N4. 9-aterriead.jracing doad (id.tan truch)Truek loud No. 10 -crib pier doad (5 -ton trienl)Capabilutien of suandard track loadsNumber tht undididing parcied foshded
Orapinization of angembly party Erapination of anocmbly part
Sale byarthy capncity tor vanoun noüa
Capacities. in thins. of arllisues shoten in Figunan 4s - 4-11'Гyper of mrillage Desded
Ftor|wat clantence and erilluge heigbtNumber of recking rislitira neadid fur boldga
howe uf plain pollers noeded far bridgeNumber ni i jacka noeded al each end of brideBatley hridge etcesing reatictionLaunchine-mues cumpogitan fot: TS beidgeaLaunchine-nioe componidion far DD bridges[avnehing nase compusitidn Far Tit brilyseLumelting-nita composition for TT bridpe29
 115
 IIS
Clmap and launching daca far two lane brideta
122
 124

Table	Title	Fage
10－6		1\％
11－1		128
11－2	Weight nitypical bgyn，in showt tona，for axtur－widenod Bailay bnigge Mais	1 13
11－4	Launching data for ctoss to apann	198
11－4		1：14
11.5	Maximum reactions on any obe hane plate	Lis
12－1		141）
jibl		144
12 L	Maximam livelond menentr aod biveload ahear caned by Cooper＇a E－72 loadiaga	145
13.3	Abutment reartion，in tona，for varioua apant of Baileytype panel railwhy bridge under Cuoper＇t E－72 loading	147
14.1		150
14.2	Clanter of Euiley brider M2＇reinfursed with auppiementary chorfel	157
551	Data on mer of cathe reisIonvement well	160
15－2	Clasifiction of bridider equappel with cable reinturcement dat	160
1fir		197
16.2		198
18.3		1\％8
$16-4$		200
$16-5$		2061
16－6		207
L6－7		204
1\％－1	Athingriationa uned to deacribe patich erib piars	212
「－2		215
【－－	Capacity of bridge pier anaembled from banic bridge aed	222
18.1	Buckapace in feet required to Jauach fixed pare］hridges by the uandard Jauachung nose method	226
｜x－2		247
18．3	Anseabijy for dunmehiag wish tail and counteravight	2319
19.1	Parta required to arumble uingletrum und mulutrusa girders	坴0）
14.2		251
39.3		家家
19.4	Weight，in teme，of singletruse und anilliture griety	$2 \mathrm{Si4}$
201	Clabe of baye and apene in paned bridge on tatzex	2813
20.2		265
20.3	Wiand prebguren	275
21－1		279
21－2		－30
21.3		240
$21-4$		2 By
22.1	Stength of M2 paocl－bridge parta	$2 \mathrm{dr7}$
些2	Sitength of panelbibidge erection equipment	209
\％2．8		2 cs
23.1	Deatruction uf arperabled dradig with ida companent parts	2.44
24.2	Dickitucturn uf stacked equapramt	299

fisen pocket inside back cover)

Table	Tites	Pate
A. 1	Patta nended dand their quartiticat Far Eailey bridet	安
A. 2	Comaponeate of a parel tridere, Bailey type M_{2}	29\%
A. ${ }^{\text {d }}$		2849
A. 4		264
A. 5	Numbeet of ktandard truck lapde ior ditfetent ejpars and ancemblana	301
*-6		
A-7		4103
A8	Furaiulaw for computing number of parim and apares far two-lane bridera and ooses	
A-s	Numbur of parts per buy for rlasa 30 bridges	3013
A-10	Nutntort of paris per buy fur riasa \&o brivkes	509
A-11		311
A-12		31.3
A 12	Typical zaderay janarl bedqual frult in ETO	315
A. 14	Strengeth ol individ usil parail-srib parts	3
A-15	Equiperent and tranaportntion required to boild alardard panel crib pieta	
A-16	Shesce atal hending momenta in percentoge of maximum rapaciny	. 21

APPENDIX B

I. 1

날

- 1
$B \cdot 1$
b. 5
Pasic iasore atems 为
Maintenance sind sparating nuproliea 24
Cable reabforemment act--pawrative maintenaract cbecke ada uervices 64
Troubleuhomary37
APPENDIX C
Froperius of yoloriend Americant siandard [-benoma 3.14Properkiey of uklectad wide Jagge brara4349

Donald Bailey $1901>/ 2$ 1985

PREFACE

This manual is intended for use by engineer commanders, staff officers, combat engineers, and bridge specialists who are required to build the Bailey bridge.

The purpose of this manual is to provide the user instructions needed to build the standard Bailey bridge and its several variants. It describes bridge components, loading and transport, methods of assembly, and maintenance. It also describes special applications, such as two-lane, extra-wide, deck, railway, pier- and barge-supported bridges, and towers built from Bailey bridge components.

The Bailey bridge has several distinctive features. It is built by manpower alone. It is made entirely from prefabricated parts, the most notable of which are its light-steel panels linked by pinned joints. It is a through-type bridge. And it can be moved from one site to another.
The Bailey bridge was invented by Donald Coleman Bailey, an English civil engineer. In 1941, Bailey gave his first sketch of the
bridge to the British War Office which paid him the equivalent of $\$ 48,000$ in 1985 American currency.

The Bailey bridge used in World War II was designed to be moved, rebuilt, or replaced in several hours, even under enemy fire. It was used widely and well by Allied armies in Italy and northwest Europe, 1943-45. British Field Marshal Lord Bernard Law Montgomery said: "Without the Bailey bridge, we should not have won the war. It was the best thing in that line we ever had." Donald Bailey was knighted in 1946 for this contribution to the Allied victory in World War II.

The proponent agency of this publication is the US Army Engineer School. Submit changes for improving this publication on DA Form 2028 (Recommended Changes to Publications and Blank Forms) and forward to Commandant, US Army Engineer School, ATTN: ATZA-TD-P, Fort Belvoir, Virginia 22060-5291.

Part One THE BAILEY M2 BRIDGE

CHAPTER 1

HISTORY AND USE OF THE BRIDGE

At the outset of World War II, the United

 States (US) Army sought a versatile bridge that could span a variety of gaps and be quickly assembled by manpower alone. For this reason, we adopted the design for the British prefabricated Bailey bridge, US nomenclature Ml. We revised the design to provide a greater roadway width of 12% feet and designated it the Panel Bridge, Bailey M2 (Figure 1-1). The British then modified the US version by widening the bridge again, thus producing the extra-wide Bailey M3 bridge. The US Army does not stock the M3 bridge in its arsenal. The Bailey bridge is a through-type truss bridge, the roadway being carried between two main girders. The trusses in each girder are formed by 10-foot panels pinned end to end. In this respect, the Bailey bridge is often referred to as the "panel" or "truss" bridge.
ADVANTAGES

Some of the characteristics that make the Bailey bridge valuable to field commanders are-

- It is easy to install. Each part of the Bailey bridge is a standard machinemade piece and is interchangeable among spans. Inmost cases, no heavy equipment is required to assemble or launch a Bailey bridge; only basic pioneer skills and equipment are needed.
- It is highly mobile. All parts of the bridge can be transported to and from the bridge site by 5 -ton dump trucks and trailers.
- It is versatile. Standard parts can be used to assemble seven standard truss designs for efficient single spans up to 210 feet long and to build panel crib piers supporting longer bridges. With minor nonstandard modifications, the expedient uses of bridge parts are limited only by the user's imagination.

CONSTRUCTION

Transverse floor beams, called transoms, are clamped to the bottom chords of the trusses and support stringers and decking. Sway braces between the girders provide horizontal bracing; rakers between the trusses and transoms keep the trusses upright; and bracing frames and tie plates between the trusses provide lateral bracing within each girder.

Main girders

The main girders on each side of the centerline of the bridge can be assembled from a single truss or from two or three trusses side by side. For greater strength, a second story of panels can be added to the trusses. The upper stories are bolted to the top chord of the lower story. For greatest strength, a third story is added. These three basic types are
shown in Figure 1-2 (page 4). The types of possible truss assemblies are given in Table 1-1 (page 4). A single-truss, double-or triplestory bridge is never assembled because it would be unstable. All triple-story bridges with the deck in the bottom story are braced at the top by transoms and sway braces which are fastened to overhead-bracing supports bolted to the top chords.

Materials

The decking, called chess, is wood. Panels, end posts, transoms, and ramps are a lowalloy, high-tensile steel. All other parts are carbon structural steel. All joints in the parts are welded.

Deck

The clear roadway between curbs, called ribbands, is 12 feet 6 inches wide. The transoms supporting the roadway are normally set on the bottom chords of the bottom story. Footwalks can be carried on the transoms outside of the main trusses on each side of the bridge.

Bearings

End posts pinned to the end of each truss sit on cylindrical bearings which rest on a steel base plate. On soft soil, timber grillage is used under the base" plates to distribute the load. The bridge can be assembled between banks of different elevations, but the slope should not exceed 30 to 1.

bridges; railway bridges; bridges on piers; and floating bridges can be built with panel bridge equipment. - Panel crib piers and towers up to 70 feet high supporting continuous spans, and up to 110 feet high supporting broken spans, can be assembled with panel bridge equipment and special crib-pier parts.

- Many expedient structures can also be
- Many expedient structures can also be include causeways, box anchors, towers for floating bridge cables, and loading hoppers and gantries.

TYPES OF STRUCTURES

Panel bridge equipment can be used to assemble fixed bridges and panel crib piers and towers. Other special structures such as floating bridges, suspension bridges, retractable bridges, and mobile bridges, can be assembled using special parts. Panel bridge equipment is normally used to assemble fixed simple-span, through-type bridges from 30 to 210 feet long. The bridge can be assembled to meet varying conditions of span and load Bridge weight per bay is given in Table 1-2 (page 5). The following special assemblies are also possible:

- Two-lane, through-type bridges; deck-type

fiedre i. I Partel bridke, Bailty type MI

SOMGLE TRLIS5 SdNGLE.STOHY (SSI 2 DOUBLE TAUSS 5INGLE-STOAY (DS) 3 TRIPLE-TRUSS SINGLLE-STOAY CTSI 4 COUBLC.TAUSS DOUBLE-STORY (ON) 5 TRIPLE-TRUSS BOUUELE-5TORY \&TD 6 DOUELE-TRUSS THIPLF 5TORY JDT 7 TRIFLE-TRUSSS TRIPLE-STOAY TTIJ

Tabive 2.5 Abbreviarion for ingle-dathe paner'

Tade iv Weteht of Mz penel bridge in tone per baxy

' Dovion he:

CHAPTER 2

BASIC EQUIPMENT

BRIDGE PARTS 6

ERECTION EQUIPMENT 15

BRIDGING TRUCK LOADS 19

The Bailey M2 bridge set contains 29 different items of bridge parts and 30 items of erection equipment Table A-1 in Appendix A shows the number of parts needed to build a specific Bailey bridge.

> WARNING: Due to the size and weight of components, personnel are advised to use extreme care when handling them. Failure to do so may result in serious.

PANEL

The panel (Figure 2-1) is the basic member of the bridge. It is a welded, high-tensile steel truss section 10 feet (3.0 meters) long, 5 feet 1 inch (1.5 meters) high, and $61 / 2$ inches (16.5 centimeters) wide. It weighs 577 pounds (262 kilograms) and can be carried by six soldiers using carrying bars.

The horizontal members of the panel are called chords. Both chords have male lugs at one end and female lugs at the other. Panels are joined end to end by engaging these lugs and placing panel pins through the holes in the lugs. On the top of the bottom chord are four seatings or dowels. The beams that

BRIDGE PARTS

support the bridge roadway will be clamped to these dowels. Table 2-1 lists the holes in the panel.

PANEL PIN

The panel pin (Figure 2-2) is $85 / 16$ inches (21.1 centimeters) long, $17 / 8$ inches (4.8 centimeters) in diameter, and weighs 6 pounds (2.7 kilograms). It has a tapered end with a small hole

for a retainer clip. A groove is cut across the head of the panel pin parallel to the bridge pin retainer hole. Panel pins should be inserted with the groove horizontal; otherwise, the flanges of the panel chord channels make it difficult to insert the retainer clip.
(0.8 centimeter) cover plate on each flange. The transom weighs 618 pounds (280 kilograms). It can be carried by eight soldiers using carrying tongs clamped to the upper flange or carrying bars inserted through holes in the web.

The underside of the transom has six holes into which the panel dowels fit. The transom rests on the lower chord of the panel and is held in place with a transom clamp. The upper side of the transom has six lugs with an additional lug near each end. The stringers and rakers (explained later in this chapter) attach to these lugs.

Transoms are normally spaced 5 feet (1.5 meters) apart, one at the middle and one at the end of each panel, to support vehicles of class 70 or less. Four transoms per bay-two in the middle and one at each end of the panel-are required to support vehicles over class 70.

WARNING: Transom clamp is a hinged component; use care when handling to prevent injury.

TRANSOM CLAMP

The transom clamp (Figure 2-5) is a hinged screw-in type clamp, $131 / 2$ inches (34.3 centimeters) high and 8 inches (20.3 centimeters) across the top. It weighs 7 pounds (3.2 kilograms). It clamps the transom to the vertical and bottom chord of the panel. It is tightened by a vise-handled screw.

WARNING: Sway brace is a multi-hinged component; use care when handling to prevent injury.

SWAY BRACE

The sway brace (Figure 2-6) is a $11 / 8$-inch (2.9 centimeters) steel rod, hinged at the center,
and adjusted by a turnbuckle. It weighs 68 pounds (30.8 kilograms). At each end is an eye, and a chain with a pin attached. This pin is inserted through the eye to the sway brace to the panel. The sway brace is given the proper tension by inserting the tail of an erection wrench in the turnbuckle and screwing it tight. The locknut is then screwed up against the turnbuckle. Two sway braces are required in the lower chord of each bay of the bridge, except the first bay of the launching nose, and in each bay of overhead bracing.

RAKER

The raker (Figure 2-7) is a 3-inch (7.6 centimeters) steel beam with a $23 / 8$-inch (6.0 centimeters) flange. It is 3 feet $85 / 16$ inches (1.11 meters) long and weighs 22 pounds (10.0 kilograms). A raker connects the ends of the
transom to the top of one end of each panel of the inner truss. This prevents the panels from overturning. An additional raker is used at each end of the bridge. Both ends of the raker have hollow dowels for the bracing bolts. The dowels fit through a hole in the panel and a hole in the transom.

BRACING BOLT

A bracing bolt (Figure 2-10) is $3 / 4$ inch (1.9 centimeters) in diameter, $31 / 2$ inches (8.9 centimeters) long, and weighs about 1 pound (0.5 kilograms). A special lug on its head prevents rotation when the bolt is tightened. A $11 / 8$ inch (2.9 centimeters) wrench is used to tighten it. The bracing bolt is used to attach rakers, bracing frames, and tie plates to panels. It is inserted into the hollow dowels of the braces to draw parts into proper alignment.

CHORD BOLT

A chord bolt (Figure 2-11) is $13 / 4$ inches (4.4 centimeters) in diameter, $101 / 2$ inches (26.7 centimeters) long, and weighs $71 / 2$ pounds (3.4 kilograms). It is tapered through half its length to assist in drawing the panels into alignment. A $17 / 8$-inch (4.8 centimeters) wrench is used to tighten the bolt. Chord bolts join the panels, one above the other, to form double and triple-story bridges. Two bolts per panel pass upward through holes in the panel chords and are tightened with nuts on the lower chord of the upper story. They are also used to fasten overhead bracing supports to the top panel chord.

STRINGERS

Stringers (Figure 2-12) carry the bridge's roadway. Each stringer consists of three 4inch (10.2 centimeters) steel beams, 10 feet (3.0 meters) long, joined by welded braces. There are two types of stringers: plain stringers weighing 260 pounds (118 kilograms) and button stringers weighing 267 pounds (122 kilograms). They are identical except that the latter has 12 buttons which

hold the ends of the chess (roadway) in place. Each bay of the bridge has six stringers: four plain stringers in the middle, and a button stringer on each side. The stringers are positioned by the lugs on the top of the transoms.

CHESS

Chess (Figure 2-13), often referred to as deck or decking, form the road surface. A piece of chess is 2 inches (5.1 centimeters) by $83 / 4$ inches (22.2 centimeters) by 13 feet 10 inches (4.2 meters). It is made of wood and weighs 65 pounds (29.5 kilograms). It is notched at the ends to fit between the buttons of the bottom stringer. Each bay of the bridge contains 13 chess, which lie across the stringers and are held in place by the buttons. Chess are held down by ribbands.

STEELRIBBAND (CURBS)

A ribband (Figure 2-14) is a metal curb 8 inches (20.3 centimeters) high and 10 feet (3.0 meters) long. It weighs 162 pounds (73.5 kilograms). It is fastened to the button stringers by four J-type ribband bolts.

RIBBAND BOLT

A ribband bolt (Figure 2-15) is a J-type bolt, 1 inch (2.5 centimeters) in diameter and $85 / 8$ inches (21.9 centimeters) long. It weighs $41 / 2$ pounds (2.0 kilograms). A $11 / 2$-inch (3.8 centimeters) wrench is used to tighten it. The ribband bolt fastens the ribband to the button stringers and ramps. The hook end of the bolt grips the lower flange of the outer beam of the button stringer or ramp.

Fitiate 2 I6 ETuf pratn
the panel at one end of the bridge. In jacking the bridge, the jack is placed under the step. The lower end of the end post has a bearing block with a semicircular groove which fits over the bearing.

BEARING

The bearing (Figure 2-17) spreads the load of the bridge to the base plate. A bearing is a welded steel assembly containing a round bar which, when the bridge is completed, supports the bearing blocks of the end posts. During assembly of the bridge, it supports the bearing block of the rocking roller (explained later in this chapter). The bar is divided into three parts by two intermediate sections that act as stiffeners. The bearing is $45 / 16$ inches (11.9 centimeters) high and weighs 68 pounds (30.8 kilograms): One bearing is used at each corner of a singletruss bridge and two bearings per corner for a double- or triple-truss bridge.

Nipure 2.13 Newing

BASE PLATE

The base plate Figure 2-18 is a welded steel assembly with built-up sides and lifting-hook eyes on the top at each corner. It is used under the bearings to spread the load from the bearings over the ground or grillage. The bottom surface of the baseplate is $131 / 2$ square feet (1.25 meters 2). The base plate weighs 381 pounds (173 kilograms) and is large enough for the bearings at one corner of a single-, double-, or triple-truss bridge. Bearings can slide 9 inches (22.9 centimeters) longitudinally on the baseplate. The numbers 1,2, and 3 are embossed on the edges of the base plate to indicate the position of the plate under the inner truss of single-, double-, and triple-truss bridges respectively.

RAMPS

Ramps (Figure 2-19) are similar to stringers but consist of three 5 -inch (12.7 centimeters), instead of 4 -inch (10.2 centimeters), steel beams. They are 10 feet (3.0 meters) long and are joined by welded braces. The lower surface of the ramp tapers upward near the ends. There are two types of ramps: plain ramps weighing 338 pounds (153 kilograms), and button ramps weighing 349 pounds (158 kilograms). They are identical except that. the latter have 12 buttons which hold the ends of the chess in place. The ends of the ramps fit into lugs on the transoms at the ends of the bridge.

RAMP PEDESTAL

Ramp pedestals (Figure 2-20) are built-up welded steel assemblies weighing 93 pounds (42.2 kilograms): They prevent the transoms supporting multiple-length ramps from over-

turning and spread the transom load over the ground. They are held in place by spikes or pickets driven through holes in their base plates.

Figure 2:gid Ramp perdentai

FOOTWALK

The footwalk (Figure 2-21, page 14) may be of wood or aluminum. The wood footwalks are 2 feet 6 inches (0.8 meter) wide and 10 feet (3.0 meters) long. The aluminum footwalks are $253 / 4$ inches (65.4 centimeters) wide and 9 feet $111 / 2$ inches (3.0 meters) long. Supported on footwalk bearers, footwalks are laid along the outer sides of the bridge for use by foot troops.

FOOTWALK BEARER

A footwalk bearer (Figure 2-22) is a built-up beam of pressed steel 4 feet (1.2 meters) long,
weighing 23 pounds (10.4 kilo grams). Bearers are attached to all transoms and hold the footwalk post.

FOOTWALK POST
A footwalk post (Figure 2-23) is 4 feet (1.2 meters) high, weighs 10 pounds (4.5 kilograms), and is fitted into every footwalk bearer. Hand ropes are threaded through two eyes on each post and secured either to holdfasts on the banks or end footwalk posts.

OVERHEAD-BRACING SUPPORT

The overhead-bracing support (Figure 2-24) is used to clamp overhead transoms and

Figker 2.2/ Aluminant fonitualk
sway braces to trusses for overhead bracing of triple-story bridges. The support is a welded metal assembly that weighs 150 pounds (68.0 kilograms). It is fastened to the tops of thirdstory panels by chord bolts. A transom is seated over the pintles on top of the support and secured by cleats over the lower flange held by four nuts and bolts. One support per girder is placed on each bay of bridge.

Fugwe 2-24 Oterhear-bratity abport

ERECTION EQUIPMENT

ROCKING ROLLER

The rocking roller (Figure 2-25), weighing 206 pounds (93.4 kilograms), consists of three rollers housed in a balanced arm which fits over the bearing, and is free to rock on it. Two side rollers on the flange on each side of the rocking roller frame act as guides for the trusses. The side rollers can be removed from the flanges by removing split pins from spindles underneath the flange; they then remain loosely attached to the frame by a chain. The rollers distribute the bridge load along the bottom chord during launching. The maximum allowable load on one rocking

TRANSOM ROLLER
The plain roller (Figure 2-26) is 2 feet $11 / 2$ inches (64.8 centimeters) wide and weighs 116 pounds (52.6 kilograms). It consists of a welded housing containing a single roller split in two. The maximum allowable load on one roller is 10 tons (9.1 metric tons). Trusses of single-truss bridges can be carried on either half of the roller. Second and third trusses of triple-truss bridges are carried on both halves.

PLAIN ROLLER

The transom roller (Figure 2-27) is a roller having an outside diameter of about $17 / 8$ inches (4.8 centimeters) (or $11 / 2$-inches [3.8 centimeters] extra-heavy steel pipe) and a

titure 220 Phain roffer

fisure 293 Trantom rotier
length of $65 / 8$ inches (16.8 centimeters). The roller is fitted with bronze bushings at each end and revolves on a l-inch (2.5 centimeters) diameter steel pin mounted in a steel frame which is built up from standard steel bars and angles. The roller assembly is 8 inches (20.3 centimeters) long, $75 / 8$ inches (19.4 centimeters) wide, and $53 / 4$ inches (14.6 centimeters) high overall. It weighs about 12 pounds (5.4 kilograms). The roller is used to make the placement and removal of transoms easier during the assembly and disassembly of the bridge.

JACK

The jack (Figure 2-28) is used to lift the bridge on and off the rocking rollers. It is a mechanical lifting jack (the type normally used in rigging, railroad, and construction work). It has a lifting range of 15 inches (38.1 centimeters) and a capacity on the top of 15 tons (13.6 metric tons). When the weight is carried on its toe, its capacity is only $71 / 2$ tons (6.8 metric tons). Jacks from different manufacturers have different spacing (pitch) between the teeth, as listed in Table 2-2. Where jacks are lifting at the same point, all jacks used must have the same tooth pitch so they can be operated in unison. The jack weighs 128 pounds (58.1 kilograms).

Pryyru 2-28 Jack and jack ahoce
Fable 2.2 Pitoh of leeth in ponel-bridge juckn

JACK SHOE

The jack shoe (Figure 2-28) is a welded assembly which fits over the bearing and supports the jack. In jacking under the step of the end posts, the bearing can be placed readily without removing the jack shoe. The shoe is $43 / 16$ inches (10.6 centimeters) high and weighs 36 pounds (16.3 kilograms). It fits over the bearing on the base plate.

WRENCHES

The wrenches provided in the bridge set are shown and listed in Figure 2-29

PANEL LEVER

The panel lever (Figure 2-30), used in assembling the second and third trusses after the first truss is in place over the gap, is a wooden bar 7 feet 9 inches (2.4 meters) long weighing 48 pounds (21.8 kilograms). It has a fulcrum near the center and a lifting link at the end. The lifting link has a swiveling crosspiece which can be readily attached to the top of a panel by passing it through the upper chord and turning it. The upper end of the link slides in a slot-the inner end of the slot is used when erecting the second truss, the outer end is used when erecting the third truss. The fulcrum is always placed on the top of the first truss. Two levers per panel are required, with two soldiers operating each lever.

CARRYING BAR AND TONGS
A wooden carrying bar (Figure 2-31) is 3 feet 6 inches (1.1 meters) long and reinforced by a steel band at the middle. It is used to carry panels and transoms. It weighs 8 pounds (3.6 kilograms). Carrying tongs are steel and

shaped like railroad tongs, as shown in Figure 2-32. These tongs are used to carry transoms by clamping them over the top flange. One
soldier carries one of the two handles. Normally, four pair of tongs and eight soldiers are used to carry a transom.

CHORD JACK

The chord jack (Figure 2-33) consists of two welded steel frames joined by a knucklethreaded screw assembly. It is operated by a ratchet lever. The lever has a shackle at its end to which a rope can be attached, making operation easier. The chord jack is used to force the panels apart so the chord lug holes align and the chord bolts can be inserted.

PIN EXTRACTOR
The pin extractor (Figure 2-34) assists in dismantling the bridge. After the pin has been driven part way out, and the recess under the head of the pin is exposed, the pin extractor grips the pin head and forces the pin out by a levering action. It is particularly
useful for dismantling the third truss of a triple-truss bridge where the closeness of the second truss makes it impossible to drive the pins out with a hammer.

LAUNCHING-NOSE LINK MK II

The launching-nose link Mk II (Figure 2-35) is about 10 inches (25.4 centimeters) long and 7 inches (17.8 centimeters) wide and weighs 28 pounds (12.7 kilograms). It consists of two steel frames welded back to back. The lugs of two panels fit into the link. The sides of the link have holes into which panel pins can be inserted. The links lie flush with the underside of the bottom chords and have a false flange welded on the bottom edge so the bridge can be rolled out on launching rollers. It also has a pintle on the top to seat a transom. Launching-nose links overcome the sag occurring when the launching nose is cantilevered over the gap. They are also used between the upper jaws of span junction posts during the launching of broken-span bridges.

TEMPLATES

Two types of templates are provided, one to locate the bearings for the rocking rollers and the other for the plain rollers. The rockingroller template (Figure 2-36) weighs 78 pounds (35.4 kilograms) and consists of a timber base with timber strips on top forming two spaces large enough for rocking-roller bearings. At one end of the template are two angle cleats which are used as measuring points. The plain-roller template Figure 2-37) weighs 22 pounds (10.0 kilograms). It consists of a timber base with timber strips on three sides

Fighre 2.34 Pin criractor

Figure 2-35 Lannching-note linh hb II
and a steel strip on the fourth. The strips surround a space large enough for the base-of a single plain roller. The template also has two angle cleats at one end for measuring points.

Figure 2.36 Fioching-roiter 2empiate

BASIC BRIDGE SET

Parts for standard truck loads are drawn from these basic sets. Tables A-2 and A-3 in Appendix A list components of the M2 panel bridge basic set. The set contains enough parts. and equipment to install two 80 -foot (24.4 meters) double-single M2 bridges with launching nose or one 130 -foot (39.0 meters) double-double bridge with launching nose.

Conversion Set No. 3, Panel Crib Pier, M2 is used with equipment from the basic set to build panel crib piers. Table A-4 in Appendix A lists component parts of conversion set No. 3. Enough parts are issued with each of these sets to provide the assembly of a triple-truss pier supporting two triple-truss broken spans and containing both horizontal and vertical stories.

FNHers 237 Plein-nother template

BRIDGING TRUCK LOADS

RECOMMENDED BRIDGING LOADS

The engineer company (panel bridge) normally transports one set of the Bailey bridge on 5 -ton dump trucks and 4 -ton bolster trailers. The company has two platoons, each capable of transporting one 80 -foot (24.4 meters) bridge (the most common bridge installed). The loads shown in Figures 2-38 through 2-47 and Tables 2-3 through 2-13 (pages 20 through 30) have the following features:

- All loads are within the rated capacity of the assigned vehicles.
- The loading lends itself to stockpiling or assembly on a restricted site. A launching nose can be started with only three loads on the site.
- The number of trailers is 40 percent of the number of trucks. This makes it possible to use trucks to tow trailers if necessary.
- Erection equipment is spread over four trucks and one trailer, thereby minimizing the effect of loss or breakdown.
- Trucks are loaded with all the female or all the male panel ends toward the rear of the vehicles.
- Steel cables are used for tiedowns on all truckloads.

Proble 2．3 Trurik kond No．1－parti and grithage inad
 2 londe per company

фuмwハIT	ITEM	WENCH1 IID	
		U141	T074
4	｜llack，dowble，in Min rape	1	37
1	Fineck，Iriple．Por 1＊rope	24	10
1		4.3	13
1	Tox，mood	60	120
\pm	Linctor．pith	1＊	36
5	Wamblor．IWHoer－1atcl	1	20
2	Heth daketi－ltwir，15－ton	128	254
1	beck 6mond	＊	164
4		4	132
24		18	432
72	い	32	3.74
30		0.13	7
100 16	hall．wirt．sival		100
4	Pithets，sted	12	73
14	Pin，cannelar，parel，${ }^{\text {d，}} 15$ A	5.8	110
21	Plate，Im	1.5	74
－	Flata，mase，beariay	H11	1，514
1	Rallar．plain	315	軥
1	Tallar，sortiot	206	824
2	Raller．Irathem	12	24
B		58	528
4	Smee．Jukh	35	14
4		＊	32
2	5ige bok inkeriot－aliynanaled． 14cialt	6	12
10	\＄pily， h＇s $^{\text {－}}$		10
4	Tamplate，racting．mer	78	312
8	lamplata，plain rodur Tongs，carning	12	137 104
2	Wirs ioft artambly	12	24
5	Wranth，rathat feverselv	13	71
t	Wiendin，seckel．ollisel 9r＊	12	35
12	Witheh．stouthural．Lbr ior X＇ boldt	2	24
6	bellas	47	27
\％	bolis Tptal	54	45 $9 \$ 16$

Pigurc 2 fif Truck lood number 1－partin and arillage foud on 5－ton truche

Table 2.5 Trach Load Mg．\％－parail Lood（6－tur
 IZ towds per camparnyl

	1TEM		
		Lmit	JOTRL
7		7	［
1	Eve．trrpiny	1	74
5	PaM，dilland，purdrul J	4.5	135
B	Pim，Motcint tridy	1	10
26	日914，thantelar．chord	7.5	113
4		58	tr
＋10	clanex bitulow	7	家
45	Clip．fatwour．Actal	0.12	1.4
4		4	156
2		＋	4
8	Tramel，liwis．bildet	π	5，191
2	Pribl，stold	12	24
26		6.1	159
4		23	销
4	Fibliand，murdra	162	415
	1plot		7．277

Uat

Figure 2-4, Tration diad number 4-tranmons toad of 4-ton bolater traider

Tabit 9.7 7TMel towd Man g-deple load (6-ton

f doadd ber compranyl

取ARFITY	(JIEM	WEICHA dibj	
		UNIT	10TAL
62	jomen, 0	5)	21.0
2	Frater, luping miden	4	Hid
1	Ptrieme, M-tion	27	1.130
16	Stitipe, M4i	940	4.100
	70w		*, r -

Fikure \&-f2 Track Joan number 5-deck doad on f-ion triwh

Figare 2-43 Truck load number 6-hamp tomp on dhant frach

 2 dajus pur rompany

	ITEM	-	
		さん!	Tarfit
40	F Bamer, 1*Oham	23	9 cl
16	Forbalk	104	1.564
40	Pest. rowimet	16	400
2		20	40
	Iotal		3.124

Tanic 2．If Truek load Wo．9－
oucrhead－bracing foad fiston bruchef

Glahtil？	17E		
		U⿴囗十	10TA4
13	Exay，Iramport	2	26
50	Solt，braciny lin maty	1	－
141	Bolt，chord 112 pes （ex）	7.5	1，멤
16		54	1，1018
10	Fisen，maricy	4	4010
20	Semapt dwerhuddrancies	150	1.100
	Tata		3.654

 uman in ind

Conversion set No. 3 is carried in 2 crib-pier loads. Information on the capabilities of different standard truck loads is given in Table 2-13, and Tables A-5 and A-6 in Appendix A.

BAY LOADS

The recommended bridge load for combat operations is the bay load (Figure 2-47, page 30). Each bay load truck contains all the parts, except transoms, required for one bay (10 feet) (3.0 meters) of double-single Bailey bridge. This loading lends itself well to most combat engineer Bailey bridge missions. Table 2-14 (page 30) lists the parts found in the bay load. Four-ton bolster trailers carry the transoms with the bridge load mentioned earlier. The bay load is designed to be easily unloaded by crane. However, the load may also be unloaded by hand or dumped if a crane is not available. If the load is dumped, take care not to damage the chess. For a complete bridge, parts and grillage, launching nose, ramp, footwalk, spares, and overhead-bracing loads must also be included.

Tabic ! 1 1 Truck knad Np. 10-nrib-pier tomed \{s-ian truch

4

Min matian ail

Tabie 2.33 Capabilitider of tiandard Erurk Ioada

OUAK1rIY	ITEN	WICEHE (10)	
		UNIT	TATAL
12	Bolt. Mreint, Mrada	1	12
5	Pala, pibhand	4	35
2		68	134
13		65	445
5	Chane tunles	3	56
*	Clic. ritamir. atmal	0.13	1.04
1	Fram, Mremel brimp	4	4
4	Penml. 1nss-bidet	57	2.3*
t		6.1	41.1
2		28	4
2	Viman, giodral	167	324
4	\$lriaper, luetton	267	534
4	Stuinger, paim	260	1.010
	Tall		5.473

Figure 2.si Bay trad

CHAPTER 3

PLANNING AND ORGANIZATION

Each bridge site must be reconnoitered to select the site most economical in use of available personnel, equipment, and time. The reconnaissance officer must be told the following before making the reconnaissance

- Where bridge is needed. The general location of the bridge is determined by tactical requirements.
- Class of bridge needed. The class of the bridge is determined by the type of vehicles it must carry.
- When bridge is needed. The time set for the bridge to become operational affects seriously planning for the mission.
- Who is to construct the bridge.

SITE RECONNAISSANCE

A thorough evaluation of information from preliminary studies may aid the reconnaissance by limiting it to a few suitable sites. Sources of preliminary information are intelligence studies and reports, interviews with local civilians, maps, aerial photographs (including stereo-pairs), and aerial reconnaissance.

SITE SELECTION

Whenever possible, make aground reconnaissance. The following site selection factors are desirable for a panel bridge:

- There should be access routes at each end of the bridge tying into the main road net. These routes should not require excessive maintenance or preparation.
- Approaches should require little preparation. These approaches should be two lane and straight for 150 feet (45.7 meters) at each end of the bridge. Their slope should not exceed 10 percent (1 in 10). Special consideration must be given to the amount of work required to prepare the approaches and piers, since this work frequently takes as much time as the bridge installation itself.
- Banks should be firm and stable and of about equal height.
- The site should be large enough for assembly of the bridge and wide enough for unloading and stacking the parts and erection tools. The approach road often provides such space.
- There should be a turnaround area large enough to allow trucks and bolster trailers to completely turn around so they can back into the site. This area is normally located about 50 feet (15.2 meters) from the bridge site.
- There should be space for an engineer equipment park-a covered and concealed area $1 / 2$ to 5 kilometers behind the bridge
site, in which to store vehicles and equipment when not in use at the bridge site.
- A bivouac site for construction and maintenance crews and crossing noncommissioned officer in charge should be available.

Following the reconnaissance, make out a report. The reconnaissance report describes every usable site reconnoitered, and recommends a site. The report includes

- Location of site.
- Width at gap.
- Length, truss type, and type of grillage of bridge that would be assembled at site.
- Slope of bridge.
- Condition of banks and capacity of abutments.
- Proposed location of site layout.
- Site preparation required.
- Recommended method of transporting troops and equipment to far bank.
- Sketch showing profile of centerline of the bridge, extending 100 feet (30.5 meters)
on the near shore and 50 feet (15.2 meters) on the far shore.
- Sketch showing layout of assembly site, and location of turnaround and engineer equipment park.
- Truck route to bridge site from engineer equipment park.

SITE LAYOUT

When the bridging is being unloaded directly from the trucks, the site must be cleared for at least as long as the width of the gap, but the width of the site need only be the width of the approach. If the bridging is to be unloaded and stacked at the site, the site must be about 150 feet (45.7 meters) wide. The stacks are arranged as shown in Figure 3-1. In restricted areas, 30 feet (9.1 meters) should be available at least on one side of the bridge to permit insertion of transoms. Otherwise, transoms must be threaded from within two bridge truss girders.

ORGANIZATION

The work force is normally organized into unloading parties and an assembly party. Each unloading party consists of one noncommissioned officer and eight soldiers. The number of unloading parties depends on the length and type of the bridge Table 3-1). Unless an unusually large cleared area exists at the site, no more than three or four unloading parties will be able to work efficiently at one time

Figure 3.] Layint of bridian egaipment at cite

Toble 3．I Number of unioading partici nexded

WARNING：The left rear soldier calls the lift commands after ensuring that all crew members are prepared to lift to prevent injury．

The various details in the assembly party are shown in Table 3－2．In most cases，this in－ cludes the panel，transom，bracing，and decking details．The duties of the panel detail are as follows：

1 It carries，places，and pins together panels in the launching nose and bridge．

2 As soon as all panels are in place，it divides into two crews．One crew crosses to far bank and begins dismantling the launching nose．The other carries neces－ sary parts to the far bank for completion

Tabie 3．2 Orgonization df anembly party

DÉlat	1FPE DF ¢OMSThUCTIUM																	
	55		D5	5	15		00		10		UT		II		dT		T1	
	hcul	（6）		14		EM		EM			WCU					EM		EN
Cozane	！													$\stackrel{1}{3}$	0	J！	0	］
「ルごャ allat																l		；
Come opalios：																：		1
Ilc：k min																1		1
P3nal	！$]$					24	2	32	3	51	1	50 ：	3	581	3	301	3	30
Carsirk		！2		J2̂		24		28		4		41		6 C		－		24
P_{111}		I		2		1		4		6		6		5		6		ϵ
Ithesura	｜］	9	1	101	］	10	1	$10 \mid$	」	101	i	21	2	291	7	301	2	20
Caligror		8		8.		E		8		B		11		14		Ih		lh
liam：		］		2		2		2		2		4		1		4		4
Hiasine	］	4		51	」	－	1	12	I	20	1	31	：	400｜	1	32.	1	J ${ }^{\text {a }}$
3kay braca		7		2		2		i		2		b		b		E		6
Habel		2		2		2		\bar{i}		2		\％		i		1		$\hat{*}$
Hracinf．Irame				\leq		\％		1		4		\％		8		：C		8
1：10，1－								1		\cdots		14		ii		\therefore		id
1 ¢fade						：				4				2				4
Cotilitat se：\％cil												\therefore		6		1		4
Deching	1	12	：	12	1	12	」	$\therefore 1$	i	12	1	12	1	12	l	12	1	12
SIC CH_{5}		8		8		a		6		8		！		\％		E		6
		t		4		4		t		1		z		4		1		4
「uld	t	－9	1	$4 ?$	\leqslant	58	5	5	\vdots	9	－	122	－	； 13	\％	31	：	13

of the end of bridge and installation of the ramp．
3 It reforms as a single detail and completes dismantling of the launching nose．

4 It installs far－bank end posts．

5．It jacks down far end of bridge．
6 It installs far－bank ramp，placing chess and ribbands．

Duties of the transom detail areas follows:
1 It carries, places, and clamps down transoms.

2 It removes plain rollers on near bank.
3 It installs end posts on near bank.
4 It helps decking detail in jacking down near end of bridge.

5 It installs near-bank ramp and helps decking detail in placing chess and ribbands on it.

Duties of the bracing detail are to obtain, install, and adjust the following parts:

- Sway braces.
- Rakers.
- Bracing frames, on all but single-single bridges.
- Chord bolts, on double- and triple-story bridges only.
- Tie plates, on triple-truss bridges only.
- Overhead-bracing supports, on triplestory bridges only.

Duties of the decking detail areas follows:
1 It assists panel detail in starting assembly of the launching nose.

2 It lays stringers, chess, and ribbands on bridge.

3 It jacks down near end of bridge.
4 It lays chess and ribbands on near-bank ramp.

ASSEMBLY TIME

Time for assembly and installation of a normal bridge is given in Table 3-3. Table 3-3 shows estimated times for daylight assembly and launching of various lengths of different types of bridges when built by manpower alone and when using one crane. Times do not include preparation of site and layout of rollers. These times assume there is a favorable assembly site, trained personnel are
available, equipment is stacked at the site, and footwalks are omitted. Use of untrained troops, poor weather, various terrain conditions, and enemy activity will lengthen assembly time by 30 percent. Added time must also be allowed for placing wear treads. Add $1 / 2$ to 4 or more hours for preparation of site and layout and placing of rollers (depending upon the amount of work required to tevel site, install grillages, and crib up rollers). Add $1 / 2$ hour for unloading from trucks if separate unloading parties are available. If not available, add 1 to $2^{1 ⁄ 2}$ hours according to type of bridge. For blackout conditions, increase daylight times by 50 percent. For mission-oriented protection posture (MOPP) conditions, increase final construction (all other conditions considered) by 50 percent.

Habic ill Efrimated tame for equembly

SFAh	1YFE Or CONSIRLSIIOM								
	SS	DS	「5	DI:	111	$\Pi 1$	11	01	- I
:HI	IIME IhDuls!								
	COMsiructioh by hámfowtr ûyt							IISLhti Oht ERAME	
40	1.3								
60	IT	I							
\%0	1	23	3						
100	2i0	5	33	4.4					
129		3 H	4	5	64				
149		34	431	54	7 r	11314		104	
164			5	5	54	154	19	11\%	16h
170				7	31)	14\%	214	1\$5	1th
200						164	24	145	7045

INSTALLATION PROCEDURE

Installation procedure begins with site preparation (clearing mines, removing obstacles, constructing a turnaround for trucks). Installation then includes the following steps: roller layout (including baseplates), unloading of bridge equipment, bridge assembly and launching, bridge jackdown and ramp assembly, and installation of wear treads and footwalks.

MOVEMENT CONTROL
Proper planning for the movement of bridge trucks is important in providing, without confusion, the bridge equipment when it is needed. If the equipment is to be stacked at the site, time the transportation to arrive as soon as the stacking site is ready.

LAUNCHING NOSE 49

ROLLERS AND JACKS 51

RAMP REQUIREMENTS 52

EXAMPLE FIELD DESIGN PROBLEM 54

BRIDGE CLASSIFICATION 56

The Bailey bridge may be adapted to fit almost any gap. The field design procedure first determines the initial length of bridge required, and then the truss type needed to carry the required class of traffic is deter-
mined. Finally, the required grillage is determined. However, the grillage type may cause a change to the initially determined bridge length. If so, the truss type will have to be rechecked, as well as the grillage type, for
the new bridge length. To complete the field design, the number of rollers and jacks needed must also be determined.

LENGTH, TRUSS TYPE, AND GRILLAGE TYPE

DETERMINING INITIAL BRIDGE LENGTH

The initial bridge length is determined by adding the width of the gap, the safety setbacks, and the roller clearances.

Gap

The measurement of the gap depends on the condition of the abutments (Figure 4-1). These are usually classified as prepared, unprepared, or a combination of the two.

Prepared abutments are abutments which can hold the bridge load close to the face without failing. Examples of prepared abutments are mass concrete, headwall with piles,
and headwall with footers and deadman. Technical Manual (TM) 5-312 gives more detailed information on prepared abutments. The gap is measured between the faces of two prepared abutments.

An unprepared abutment is one which would probably fail if the bridge load were applied close to its edge. Examples of unprepared abutments are natural slopes, demolished abutments, or abutments with headwalls that are not strong enough to hold the load. The gap is measured from the toe of the slope of one unprepared abutment to the toe of the slope of the other.

If both prepared and unprepared abutments exist on one bridge site, the gap is measured from the face of the prepared abutment to the toe of the slope of the unprepared abutment.

> Caution: Care must be taken when completing the design process or the bridge will fail. Abutment types and location of the toe of the slope for unprepared abutments should be done carefully. Incorrectly classifying abutment types or locating the toe of the slope is the most common and dangerous design mistake. When in doubt, always classify the abutment as unprepared. If an abutment is par-
tially prepared, determine the toe of the slope at the base of the prepared face. If the face is in poor condition, determine the "real" toe of slope. Be sure to remember to measure bank height at the toe of the slope.

UNPREPARED AEUTMENTS

GINE PGEPARED, DNE UNPRFPARED AGUTIMFNT

PRFPARFD ABUITHENTS
Fizure A.J Meamping the yap-prgparcal -nd unfrepared abutiount:

Safety setback

Safety setback is the minimum distance that each rocking roller must be behind the bank of the gap. This distance depends on the condition of the abutments on each bank (Figure 4-2). If the bridge site has prepared abutments, the rocking rollers are set back a minimum of 3 feet 6 inches (1.1 meters) from the edge of the abutment.

When unprepared abutments exist, the safety setback must be calculated. If the rollers are

PREFARED AEUTMENT

UNPREPAREO ARUTR ENT
Fiyum' 4.2 Rafiety methank-jurnparnd and whprepared abutarenta
placed too close to the edge of the gap, the soil may fail during launching. Therefore, place the rocking rollers at a location behind the toe of slope of the soil. For field design, the toe of slope is where the bank's surface is 45 degrees (an average value) from the horizontal direction. This would mean that the rocking roller should be set back a distance equal to the height of the bank. However, an additional safety factor of 50 percent is added. Therefore, the safety setback is 1.5 times the bank height. The bank height is measured from the toe of the slope to the ground level at the abutment. The safety setback is measured back from the toe of the slope.

EXAMPLE:
 Given:

Unprepared abutment
Bank height 8 feet (2.44 meters)

Required:

Determine the safety setback (SS)
Solution:
Safety setback $=1.5 x$ bank height
or 1.5×8 feet $=12$ feet (3.66 meters)

Roller clearance

Roller clearance is the distance from the center of the rocking roller to the center of the bearing on which the bridge end posts will rest (Figure 4-3, page 38). The normal roller clearance, about 2 feet 6 inches (0.76 meters), is always used when determining the initial bridge length. The actual roller clearance will be determined by the type of grillage used.

Nigure is flocking rollera and bane piate at the end of brides

An example of computing bridge length with both abutments prepared (Figure 4-4) is as follows:

Given:
Gap is 56 feet (17.07 meters) (abutment to abutment)

Required:

Determine initial bridge length

Solution:

Initial bridge length $\left(\mathrm{bL}_{\mathrm{i}}\right)=$ gap + safety setbacks + roller clearances

$$
\begin{aligned}
\mathrm{bL}_{\mathrm{i}} & =56 \text { feet } \\
& (3.5 \text { feet }+2.5 \text { feet }+3.5 \text { feet })+ \\
\mathrm{bL}_{\mathrm{i}}= & =68 \text { feet }(20.73 \text { meters })
\end{aligned}
$$

Round up to the next 10-foot (3.05 meters) length to equal 70 feet (21.37 meters)

An example of computing bridge length with both abutments unprepared (Figure 4-4) is as follows:

Given:
Gap measurement (toe to toe)-
57 feet (17.37 meters)

Bank height—Near shore: 9 feet (2.74 meters) Far shore: 12 feet (3.66 meters)

Required:
Determine initial bridge length

```
Solution:
    \(\mathrm{bL}_{\mathrm{i}}=\) gap + safety setbacks + roller
        clearances
    \(\mathrm{bL}_{\mathrm{i}}=57\) feet \(+[1.5(9\) feet \()+\)
        1.5 (12 feet) \(]+(2.5\) feet +2.5 feet \()\)
        \(=93.5\) feet ( 28.5 meters)
    \(\mathrm{bL}_{\mathrm{i}}=95.5\) (29.11 meters)
```

Round up to the next 10 feet (3.05 meters) to equal 100 feet (30.48 meters)

An example of computing bridge length with one prepared and one unprepared abutment Figure 4-4) is as follows:

Given:
Gap measurement (toe to toe)53 feet (16.15 meters)

Bank height unprepared shore-
10 feet (3.05 meters)
Required:
Determine initial bridge length

$$
\begin{aligned}
& \text { Solution: } \\
& \text { bL } \mathrm{i}_{\mathrm{i}} \text { = gap + safety setbacks + } \\
& \text { roller clearances } \\
& b L_{i}=53 \text { feet }+[3.5 \text { feet }+ \\
& 1.5 \text { (10 feet) }]+(2.5 \text { feet }+2.5 \text { feet }) \\
& \mathrm{bL}_{\mathrm{i}}=76.5 \text { feet (23.32 meters) }
\end{aligned}
$$

Round up to 80 feet (24.38 meters)

TRUSS TYPE

The required truss type for a given length of Bailey bridge to carry a specified class of traffic is found in Table A-7 in Appendix A. The actual class of the bridge maybe greater than required, but not less.

Note: The truss type required for a normal crossing is always used unless otherwise directed by the field commander.

EXAMPLE:

Given:

Bridge length - 80 feet
(25.97 meters)
Required class - 60 wheel/ 60 track

Required:

Determine the truss type required
Solution:
From Table A-6 in Appendix A
Truss type: triple-single
Design class - 85 wheel/80 track

INPREPARED ABUTMEMTS

ONE PREPAAED. ONE UNPREPARED ABUTMENT

PREPAREO ABUTMENTS

fïnure 4.4 Proffke of bridec site-prapared and pipreppared aburtmertin

TYPE OF GRILLAGE NEEDED

The end posts at each end of the bridge are supported by bearings set on base plates. During launching, the entire weight of the bridge is carried by the near-bank rocking rollers, which rest on rocking-roller tem-
plates. Grillages are used to spread the load over a larger area Figures 4-5 through 4-11, pages 40 through 44) when the soil-bearing capacity is exceeded. Grillages also serve as cribbing to raise base plates or rollers to the desired level.

Description

Grillages are made of squared timbers laid under the base plate or roller template. These must be carefully leveled transversely; grillages on each side of the bridge must be Yevel with each other so that all trusses will rest on bearing plates. If bearing plates are not level transversely, only one truss will carry the load at first, until deflection under load brings the other trusses to bear. The first truss to bear will then be overstressed before the last truss can be fully utilized. This can result in failure under less than the rated load of the bridge.

Timbers for use as standard grillages are supplied in panel bridge sets. The panel bridge set supplies 144 each 6 -by 6 -inch (15.2 by 15.2 centimeters) timbers $41 / 2 / 2$ feet (1.4 meters) long, and 48 each 3- by 6-inch (7.6 by 15.2 centimeters) timbers $41 / 2$ feet (1.4 meters) long for grillage. Standard grillages using these timbers and panel bridge parts are illustrated in Figures 4-5 through 4-8.

On soft soils, some of the heavier bridges will require larger grillages than can be built from the timbers supplied in the set. For these bridges, grillages built from 8 - by 8 -inch (20.3 by 20.3 centimeters) timbers are shown in Figures 4-9 through 4-11.

Figarm 4.5 Typor 3 grittage

MATEAKDL

17 PCS 6^{\prime} ค $8^{\prime \prime}=4$

NATERLAL

12 PC5 日* к日* 120

Fïlure f-y Type if arillage

Fitury 7 . 19 Type 6 arithay

Nonstandard grillages, made of other size timbers, can be used if each layer is at least as thick and wide as the corresponding standard grillage. Squared timbers should be used, since rough cut timbers often result in uneven, wobbly cribs.

Selection of grillage

The selection of grillage is determined by the bridge length, the truss type, and the soilbearing capacity. Table 4-1 give the safe bearing pressure in tons per square foot $(\mathrm{t} / \mathrm{sf})$ on various soils. A careful evaluation of the soil character is essential to prevent grillage failures. Note that in sandy or gravelly soils, the bearing power of the soil is increased when the grillage is dug in so that it bears on the soil $1 \frac{1}{2}$ feet (. 46 meter) or more below the surrounding surface.

Note: If soil-bearing capacity value from Table 4-1 is not listed on Table 4-4, the number must be rounded down to obtain the proper grillage type.

Table 4-2 (page 46) gives the load on grillage at one comer of the bridge. Note that in some bridges the rocking-roller reaction is greater than the base-plate reaction. Table 4-3 (page 47) gives the load capacities for the grillage in varying soils. The type of grillage required may be found by determining the bridge reaction fromTable 4-2 and then selecting a grillage type from Table 4-3 which has the required capacity for the proper soil type. The

Table \& A Safe bearing mapacity for variodz toils

grillage types for various soils and bridge types are also given in Table 4-4 (page 48).

EXAMPLE:

Given:
Bridge length-80 feet
(25.97 meters)

Truss type—triple-single
Soil type-loose fine sand
Required:
Determine the grillage type required

Field solution:
From Table 4-1, soil-bearing capacity is 2 t/sf

From Table 4-4, grillage type required is type 4

Detailed analysis:
From Table 4-2, corner reactions are 59 tons (54 metric tons)-base plate, 19.0 tons (17.2 metric tons)-rocking rollers

From Table 4-3, type 4 grillage provides the necessary capacities. Type 4 provides 71 tons (64 metric tons)-base plate, 57 tons (52 metric tons)-rocking roller.

It is unlikely that the near and far banks would have different soil-bearing capacities but, if so, grillage is determined separately for each bank. The maximum allowable slope for a Bailey bridge is 1 to 30 . If bank heights differ enough to cause a greater slope, the low end may be cribbed up to decrease the slope. The cribbing must have at least the same bearing area as the required grillage. If cribbing is impractical, the high end may be excavated to reduce the slope. Figures 4-5 through 4-11 show the dimensions and necessary materials for the grillage types.

Note: Types 5, 6, and 7 are made from materials not issued with the bridge set.

DETERMINING FINAL BRIDGE LENGTH

The grillage type required may increase the roller clearance. This may affect the required bridge length. If so, the truss and grillage type must be rechecked for the new bridge length. The required roller clearances for
each type of grillage are shown in Figures 4-5 throug 4-11. The roller clearance and total grillage height are given in Table 4-5 (page 49).

EXAMPLE:

Given:
Initial bridge length-76.5 or 80 feet (23.9 or 24.4 meters)

Required class- 50 wheel/55 track
Initial truss type-double-single
Soil-bearing capacity-2 t/sf

Required:

Determine the final bridge length, truss, and grillage type

Solution:

Use the following steps:
1 Grillage from Table 4-4
-type 1 required
2 Roller clearance from Table 4-5 or Figure 4-5-4 feet 6 inches (1.4 meters)

3 Initial roller clearance was 2 feet 6 inches (. 76 meter); therefore, 2 more feet (. 6 meter) must be added to each end of bridge:

New bridge length
$=76.5$ feet +2 feet +2 feet
$=82.5$ or 90 feet (27.43 meters)

n	\$9m, If It it Fincercity Cutive caticlity Nocimerrivior ricalian	$\begin{aligned} & 30 \\ & \mathbf{4 0} \\ & 55 \\ & 14 \\ & 5.7 \end{aligned}$	$\begin{aligned} & * \\ & 12 \\ & 3 \\ & * \\ & i s \end{aligned}$	$\begin{aligned} & \mathbf{4 0} \\ & 24 \\ & 32 \\ & 24 \\ & 69 \end{aligned}$	$\begin{aligned} & \mathbf{w} \\ & \mathbf{2} \\ & \mathbf{3 5} \\ & 21.1 \\ & 10 . \end{aligned}$	$\begin{aligned} & 14 \\ & 12 \\ & 11 \\ & 21 \\ & 12.7 \end{aligned}$	$\begin{aligned} & 10 \\ & 11 \\ & 23 \\ & 11 \\ & 11 . \end{aligned}$	$\begin{aligned} & 90 \\ & 11 \\ & 19 \\ & 17 \\ & 15.9 \end{aligned}$	$\begin{array}{\|c\|} \hline 100 \\ 10 \\ 15 \\ 13 \\ 14 . \end{array}$		
留	Syn, mikn Shly raperiby Cumlot culation Perr-adit ructival 	$\begin{gathered} 54 \\ 50 \\ 100 \\ 56 \\ 10.5 \end{gathered}$	$\begin{aligned} & 60 \\ & 17 \\ & 4 \\ & 41 \\ & 12.1 \end{aligned}$	$\begin{aligned} & 10 \\ & \mathbf{1 0} \\ & \mathbf{6 4} \\ & \mathbf{4 5} \\ & 4 . \end{aligned}$	$\begin{aligned} & 6 \\ & \$ 1 \\ & 44 \\ & 16 \\ & 166 \end{aligned}$	$\begin{aligned} & \mathbf{9 0} \\ & \mathbf{4} \\ & \mathbf{5 5} \\ & \mathbf{3 5} \\ & \mathbf{2 4 . E} \end{aligned}$	$\begin{array}{\|l\|} \hline 10 \\ \mathbf{1 1} \\ \boldsymbol{\mu} \\ \mathbf{m} \\ \mathbf{2 n} . \end{array}$	$\begin{array}{\|c\|} \hline 110 \\ 23 \\ 34 \\ 27 \\ 27.5 \end{array}$	$\begin{array}{\|c\|} \hline 125 \\ 15 \\ 29 \\ 23 \\ 249 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 130 \\ 15 \\ 19 \\ n \\ 201 \\ \hline \end{array}$	$\begin{aligned} & 149 \\ & 10 \\ & 13 \\ & 20 \\ & 23 . \end{aligned}$
$\boldsymbol{2}$	Eath ial Mot Salt antaity Curtive caticit) 			$\begin{array}{\|c\|} \hline 100 \\ 52 \\ 5 \\ 4.5 \\ 21.5 \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 140 \\ 40 \\ 50 \\ \mathbf{4} \\ \mathbf{z e} .0 \end{array}$	$\begin{array}{\|c} 120 \\ 4 \\ 4 \xi \\ 4.5 \\ 2 t .5 \end{array}$	$\begin{array}{\|c\|} \hline 130 \\ 23 \\ 32 \\ 34 \\ 30.5 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 141 \\ 11 \\ 21 \\ 21 \\ 310 \end{array}$	$\begin{array}{\|c\|} \hline 154 \\ 11 \\ 19 \\ 25 \\ 3.5 \\ \hline 3.5 \end{array}$	121 10 19 25 29.6	
a	Seth, utid Stic cmerty C-lise rapechy Patondily maction " 	$\begin{gathered} \hline 100 \\ 15 \\ \mathbf{N} \\ 60 \\ 26.2 \end{gathered}$	$\begin{array}{\|c\|} \hline 110 \\ \mathbf{6 4} \\ \mathbf{0 0} \\ \mathbf{5 9} \\ 29.6 \end{array}$	$\left\|\begin{array}{c\|} \hline 178 \\ 50 \\ 61 \\ 47 \\ 720 \end{array}\right\|$	$\begin{array}{\|c\|} \hline 139 \\ 49 \\ 51 \\ 42 \\ 4 . \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 14 \\ 36 \\ 41 \\ 31 \\ 38.3 \end{array}$	$\begin{array}{\|l\|} \hline 150 \\ 23 \\ 31 \\ 15 \\ 41.0 \end{array}$	$\begin{array}{\|l\|} \hline 180 \\ 19 \\ 27 \\ 35 \\ 3 \pm .0 \end{array}$	$\begin{array}{\|c\|} \hline 176 \\ 15 \\ 19 \\ 32 \\ 40.4 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 140 \\ 10 \\ 10 \\ \mathbf{n} \\ \text { H. } \end{array}$	
ㄹ	span, in inet Sala caprity [walion cemerit\| Thu-plete nutive I 		$\begin{aligned} & 120 \\ & 50 \\ & 64 \\ & 62 \\ & 3.1 \end{aligned}$	$\begin{array}{\|c\|} \hline 130 \\ 57 \\ 75 \\ 57 \\ 433 \end{array}$	$\begin{aligned} & \hline 40 \\ & 4 \\ & 41 \\ & 59 \\ & 46: t \end{aligned}$	$\begin{array}{\|l\|} \hline 130 \\ 40 \\ 4 \\ 4 \\ 4 \\ \mathbf{n} \\ \hline \end{array}$	$\begin{aligned} & 106 \\ & 31 \\ & 49 \\ & 4 \\ & \$ 10 \end{aligned}$	$\begin{array}{\|c\|} \hline 150 \\ 23 \\ 31 \\ 40 \\ 19.3 \end{array}$	$\begin{aligned} & \hline 100 \\ & 11 \\ & 21 \\ & 12 \\ & 12.0 \end{aligned}$	$\begin{array}{\|l\|} \hline 150 \\ 12 \\ 16 \\ 40 \\ 46.0 \end{array}$	
$\bar{\square}$	Foule in foul (antian cap+cib) 	$\begin{gathered} 134 \\ 100 \\ 100 \\ 71 \\ 47.5 \end{gathered}$	$\begin{array}{\|c\|} \hline 140 \\ 47 \\ 67 \\ 67 \\ 568 \end{array}$	$\begin{gathered} \hline 150 \\ 55 \\ 41 \\ 55 \\ 54 . t \end{gathered}$	$\begin{gathered} 164 \\ 55 \\ 50 \\ 64 \\ 54.0 \end{gathered}$		$\begin{aligned} & 100 \\ & 40 \\ & 59 \\ & 50 \\ & 50 . \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 10 \\ & 23 \\ & 11 \\ & 54 \\ & 56.5 \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline 210 \\ 10 \\ 23 \\ 51 \\ 56.3 \\ \hline \end{array}$	
F	spment 4 (mor Salt Cuminy Civalion cepercty Cexp-Naby muetion ${ }^{1}$ 		$\begin{gathered} 1010 \\ \$ 7 \\ 8 \\ 12 \\ 12 \\ 60 \end{gathered}$	$\begin{gathered} 100 \\ 507 \\ 44 \\ 70 \\ 70 \\ 04 \end{gathered}$	$\begin{gathered} 200 \\ 40 \\ 5 \\ 48 \\ 48 \end{gathered}$	$\begin{array}{\|c} 2120 \\ 23 \\ 36 \\ 35 \\ 65 \\ 50 \end{array}$					

Table 4－3 Capactifig，in tont，of grifigete thown in Figures 1－5－4－11

rest jf GRILHGi	9\％		is		$1{ }^{\circ}$			25	1）			
	7	3	11	c	27	12	34	13	17	21		Wo calluar expulaid
1	11	1	H	16	15	11	56	19	17	13	w	
2	$1]$	10	4	20	15	40	56	51	3	\＄0	$\begin{aligned} & \text { 즐 } \\ & \text { 总 } \\ & \underline{y} \end{aligned}$	
\％	13	9	26	19	51	37	61	＊	61	60	言空	
4	31	$\underline{\%}$	43	15	7h	57	71	57	71	57	年	
\＄	9	17	3	3	尔	\boldsymbol{H}	万	$\boldsymbol{\mu}$	rs	14	$\underline{\underline{3}}$	
5	日	85	\＄0	B6	90	F0	90	60	＊			Iranyome： Hops FkT, ITO
7	43	31	W	64	95	10	96	50	\％	80	新号	

4 Recheck truss type，Table A－6 in
Appendix A－90 feet
－triple－single required
5 Recheck grillage，Table 4－4 －type 3 required

6 Recheck roller clearance，Table 4－5，
Figure 4－7－3 feet 6 inches（1．07 meters）
This will not increase the bridge length

7 Final design－
90 feet（27．43 meters）
triple－single，
type 3 grillage

TYPE OF CONSTRUCTION		30	40	31	G0	70	so	90	100	110	$\operatorname{secsinc}_{120}$	130	140	150	160	1 r	18 F	190	70M1	216
55	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \\ & 2.5 \\ & 1.5 \end{aligned}$		$\begin{array}{\|l} 5,6,7 \\ j \\ \text { Hone } \\ \text { Wone } \\ \text { Wone } \\ \text { Wone } \end{array}$	$\left\|\begin{array}{l} 5,6,7 \\ 3 \\ \text { Move } \\ \text { Move } \\ \text { Mone } \end{array}\right\|$	4 I Whowe W0.4 Hom	$\begin{array}{\|l\|l} 1 \\ \text { Mone } \\ \text { Mone } \\ \text { Mont } \\ \text { Monte } \\ \hline \end{array}$	$\begin{array}{\|l\|} 1 \\ 1 \\ 1 \\ \text { Nobe } \\ \text { None } \end{array}$		$\left\lvert\, \begin{aligned} & 4 \\ & 1 \\ & \text { lone } \\ & \text { Wone } \end{aligned}\right.$											
0.	1.5 1.9 2.8 2.5 1.5			$\begin{aligned} & 5 \\ & 5.7 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{aligned} & 5 \\ & 5.6 .7 \\ & 5 \\ & 1 \end{aligned}$	5. 7 4 \downarrow \downarrow Nant	$\begin{array}{\|l\|} \hline 5.7 \\ 1 \\ 1 \\ 1 \\ 1 \\ \text { Mopt } \end{array}$	$\begin{aligned} & \hline 6.3 \\ & 4 \\ & 1 \\ & 1 \\ & 1 \\ & \hline \end{aligned}$	$\begin{array}{\|c} 6 T \\ 1 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{aligned} & 4.5 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	5.7 1 1 1 1	$\begin{aligned} & \text { 5.7 } \\ & 1 \\ & 1 \\ & 1 \\ & 1 \end{aligned}$	6,7 1 1 1							
TS	$\begin{aligned} & \hline 0.5 \\ & 1.0 \\ & 1.0 \\ & 1.5 \\ & 3.5 \\ & \hline \end{aligned}$						6 6,7 1 3 1	bex $5,6,7$ 5 1 1	67 4 1 1 1	1.7 1 1 1 1	1.7 1 1 1 \square	1 6.7 1 1 1	1 1 2 1 1	6.7 4 1 1 1	4 4 1 1 1					
㕷	$\begin{aligned} & 0.5 \\ & 1.0 \\ & 2.0 \\ & 2.5 \\ & 3.5 \end{aligned}$								$\begin{array}{\|l\|} \hline 6 \\ 4 \\ 1 \\ 3 \\ 1 \\ \hline \end{array}$	1 $\$.65$ 4 1 1		1 1 1 1 1	5 4.6 .7 7 1 1	E 4.6 .7 4.6 .7 $?$ 1	4 4.4 .5 2 1 1	5 4.6. 4,6.7 i 1 1	 1 1.6 .7 2 1 1			
II	$\begin{aligned} & 0.4 \\ & 1.0 \\ & 2.0 \\ & 7.5 \\ & 1.5 \\ & \hline \end{aligned}$									$\begin{aligned} & 6 \\ & 6,7 \\ & 4,6.7 \\ & 4,6.7 \\ & 1 \end{aligned}$	1 6 8,7 $\mathbf{1 , 6 , 7}$ 3 1	1 6 6,7 1.6 2 1	1 6 6,7 $4,6,7$ 2 2	4 4.7 4.6 .7 2 2	1 6 4.7 $4.6,7$ 1 1	1 6,7 $4,6,7$ 2 2	1 6 6,9 $4.6,7$ 2 2	7 4.7 46.7 7 1		
OT	$\begin{aligned} & 6.5 \\ & 1.0 \\ & 2.0 \\ & 7.5 \\ & 3.5 \\ & \hline \end{aligned}$											$\begin{aligned} & \hline 6 \\ & 6.7 \\ & 6.7 \\ & 6.7 \\ & 7 \\ & \hline \end{aligned}$	4.7 4.6 .7 4.6 .7 z	5 4.7 4.6 .7 4.6 .7 7	6. 6.7 6.7 6.7 2	5 5.7 6.7 5.7 7	5 6.7 6.7 6.7 1	$\begin{aligned} & 6 \\ & 6.7 \\ & 4.6,7 \\ & 4.6 .7 \\ & 2 \end{aligned}$	$\begin{aligned} & \hline 5 \\ & 5,7 \\ & \mathbf{4 , 6 , 7} \\ & 4.6 .7 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 6 \\ & 6.7 \\ & 4.6 .7 \\ & 4.6 .7 \\ & 2 \\ & \hline \end{aligned}$
II	1.5 1.6 2.9 7.5 7.5															6 6.9 6.7 6.7 8.7	6 6.9 6.7 5.7 6.7 6.7	5 4.9 6.7 6.7 7	6 6.7 6.7 E. 6. i i	6. 4.9 7.6 .1 $4,6.3$ 7

| $\begin{gathered} \text { FRILLAGE } \\ \text { TYPE } \end{gathered}$ | CNERALL HEIGHT \|in| | BASE-FLATE HEIGHT (inI | ROHLEF clearance |
| :---: | :---: | :---: | :---: |
| 1 | 6 | 1 | 46° |
| 2 | 15 | 6 | 46° |
| J | 11 | 11 | 36 |
| 4 | 17 | ! | 16° |
| \$ | 16 | 15 | $5{ }^{\text {5 }}$ |
| 6 | 25 | 20 | 56° |
| 3 | 13 | 11 | 3\%' |

COMPOSITION

The launching nose Figure 4-12, page 50) is a skeleton framework consisting of panels, transoms, rakers, sway braces, and, when necessary, launching-nose links. It does not have stringers or decking. One transom with transom clamps and rakers is used behind the leading upright of each panel. Sway bracing is used in all but the first bay at the front of the launching nose. Footwalks are not assembled on the nose.

USE OF LAUNCHING NOSE

The panel bridge is normally launched by cantilevering the launching nose over the gap. The weight of the bridge acts as the counterweight. When the launching nose reaches the far shore, it rests on the rocking rollers and supports the bridge as it is pushed across the gap. The composition of the nose depends on the length of the bridge and the type of assembly. The composition of the launching nose for the various combinations of span and bridge assembly is shown in Figure 4-12 and given in Chapter 6, Tables 6-1 through 6-3; Chapter 7, Tables 7-1, 7-2; and

LAUNCHING NOSE

Chapter 8, Tables 8-1, 8-2. These tables must be followed exactly.

USE OF LAUNCHING-NOSE LINKS

The launching nose tends to sag as it is cantilevered over the gap. The approximate sag at the end of the nose just before it reaches the far bank is shown in the above mentioned tables. To overcome this sag, launching-nose links are used. Using one launching-nose link in each truss increases the length of the bottom chords of the nose by $71 / 2$ inches (19.0 centimeters); thus, the end of the launching nose is raised by $131 / 2$ inches (34.3 centimeters) for each bay ahead of the links. Because links must not be inserted with more than four bays of the launching nose ahead of them, the maximum amount of lift that can be obtained from one pair of links is about 54 inches (137 centimeters). If a greater amount of lift is required, an added pair of links can be used in one of the joints between the original pair and the end of the nose. Its position depends on how much lift is required. Figure 4-12 shows the vertical lifts that can be obtained using one or more pairs
of links. The maximum lift obtainable using launching-nose links is $941 / 2$ inches (239.8 centimeters). When calculating the position of the links, add 6 inches (15.2 centimeters) to sag values shown for safety.
When the far-bank seat is higher than or level with the near-bank seat, launching-nose links must be used to compensate for sag, and the tops of all rollers must be in the same plane. If necessary, block and tackle should be used to prevent the bridge from sliding backwards.

Launching-nose links are necessary if the far-bank seat is low enough to require the use of block and tackle on the near bank to prevent the bridge from running away when the balance point passes the rocking rollers.

Use the following steps to determine the position of launching-nose links:

1 Determine sag from Tables 6-1 through 6-3, 7-1 and 7-2, or 8-1] and 8-2

2 Safety sag of 6 inches (15.27 centimeters)

3 Lift required (LR):
LR $=$ steps $1+2$
4 Position of launching-nose link (Figure 4-12)

EXAMPLE:
Given a 160 -foot (48.8 meters) triple-single bridge with grillage type 1 on both the near shore (NS) and far shore (FS). The far-bank seat is level with the near-bank seat.

Problem:
Are launching-nose links required? If
links are required, at what distance are they placed from tip of launching nose?

Solution:
Launching-nose links are required. Therefore the following steps are used:
1 Determine sag for 160-foot triple-single (Table 6-3)
77 inches (195.58 centimeters)
2 Safety factor of
6 inches (15.24 centimeters)

3 Lift required (LR):

LR $=$ (steps $1+2$)
$L R=77$ inches +6 inches
LR $=83$ inches (210.82 centimeters)
4 Position of launching-nose link Figure
4-12):
Two pairs of launching-nose links placed at 30 feet (9.144 meters) and 40 feet (12.192 meters) from the tip of the nose

ROCKING ROLLERS

Use rocking rollers on both banks during launching. Normally, use two rocking rollers on the near bank for single-single and doublesingle truss bridges of 100 feet (30.5 meters) and shorter. Use four for all other assemblies. Two rocking rollers are normally required on the far bank; however, use four if the skeleton launching nose is double-truss in any part. Table 4-6 shows the required number of rocking rollers on near and far banks for various bridge lengths and assemblies.

PLAIN ROLLERS

Place rows of plain rollers behind the rocking rollers at intervals of 25 feet (7.6 centimeters) to support the bridge during construction. The number of rollers in each row depends on the type of bridge. Single-single and doublesingle bridges need two plain rollers per row. All other types of construction need four plain rollers per row (Chapter 5). The number of rows required depends on the construction

Table A-1 in Appendix A gives the number and position of launching-nose links required for normal bridges. This table assumes that both near-and far-shore rocking rollers are at the same elevation.

ROLLERS AND JACKS

backspace needed. Place plain rollers only every 25 feet (7.6 meters). More rollers are not required to support an overhang under 25 feet (7.6 meters). In addition, two construction rollers are used to aid in inserting the launchingnose links. These are plain rollers placed $121 / 2$ feet (3.8 meters) behind the rocking rollers and 2 to 4 inches (5.0 to 10.1 centimeters) below the plane of the other rollers. They may be removed once the construction extends back to the first row of plain rollers. The number of plain rollers needed for various bridges is shown in Table 4-7 (page 52).

JACKS

The number of jacks required to jack down a bridge depends on the span length and the type of the bridge. The number of jacks needed to jack down the end of the bridge is shown in Table 4-8 (page 52). Details on jacking procedures are given in Chapters 6, 7 , and 8 .

Note: Jacks must be positioned so that they carry no more than $71 / 2$ tons (6.8 metric tons) on the toe or 15 tons (13.6 metric tons) on the top.

$\begin{aligned} & \text { TYPF OF } \\ & \text { CdWSTRUCTKIN } \end{aligned}$	$\begin{gathered} \text { SPAN } \\ \text { \|T\| } \end{gathered}$	NEAP BAT*	FAR日 ${ }^{\text {a }}$ (NK
$\begin{aligned} & \$ \$ \\ & \mathbf{W S} \end{aligned}$	30.190	2	7
	50-10	2	2
	90.100	8	2
	114.140	4	2
T5	B0.160	4	Σ
D0	10\%.19\%	4	7
	14*180	4	4
10	114-125	4	2
	173-180	4	4
[rT	13+210	4	4
Π	103-310	4	4

Ramps are used at each end of the bridge. The slope of the ramp must not exceed 10 to 1 for loads up to and including 50 tons, and 20 to 1 for loads over 50 tons.

SUPPORT FOR END OF RAMP

The end of the ramp will carry about one quarter of the weight of the heaviest tracked vehicle to pass over it when the ramp is supported at midspan. If there is no midspan support, the end of the ramp will carry about 40 percent of the weight of the tracked vehicle. One or two stacks of chess, side by side, are laid in two layers under the tapered end of the ramp to provide the necessary bearing area on the soll. If greater area is needed for heavy loads on very soft soil, footings are used under the chess. On soil capable of supporting 2 tons per square foot, two chess under the

Jabit \downarrow s hicmiter of jocke neveded ot cach cnd of dridite

TYFE DF CONSTRUCTMON	SPAT4 [1I)	JACMA NFFTJEL AT EACHEPM \% HREが
55	70.109	7
DS	Sul 140	1
18	80.640	1
	150.150	5
00	100120	1
	180-180	6
TD	119.140	5
	150.190	4
DI	130	6
	160.103	-
	190.210	10
IT	160-170	10
	100.210	12

Fighere it it bipport for exd of ramp
tapered end of the ramp are enough for bridges up to class 67. For higher capacity bridges, four chess are used (Figure 4-13). One chess on edge at the end of the ramp serves as an end dam, so the approach can be made level with the ramp floor. An alternate method for supporting the ramps on the ground is to use a transom as a sill under the ramp.

MIDSPAN RAMP SUPPORTS

For loads of 45 tons (40.8 metric tons) or over, each ramp section must be supported at its midpoint by cribbing and wedges. This support will carry one half of the class of the vehicle passing over, and the base of the cribbing should be large enough to spread the load over the soil without exceeding the allowable bearing pressure of the soil. On soil
capable of supporting 2 tons per square foot, two chess side by side under the cribbing provide enough bearing area for all bridges. An alternative method for loads of 45 tons or more is to make the ramp level with at least $31 / 2$ feet (1.07 meters) of the ramp supported on the abutment Figure 4-14).

 46 tond or orap

PEDESTAL SUPPORTS

Because the slope of the ramp should not exceed 1 to 10, it may be necessary to use two or more ramp bays. The junction of the ramp bays rests on a transom supported by four ramp pedestals spaced as shown in Figure 4-15. These pedestals Figure 4-16, page 54) take two thirds of the class of the vehicles passing over and must be set on enough grillage to spread the load over the soil. Three 6 -by 6 -inch (15.2 by 15.2 centimeters) timbers 4 feet 6 inches (1.4 meters) long under each pair of pedestals provide enough area for 40ton loads on soil that will carry 2 tons per square foot. For heavier loads, three chess are placed side by side under the 6 - by 6 -inch (15.2 centimeters by 15.2 centimeters) timbers.

Figure d. IG TD panal tridife, Relicy type M2

SUPPORTS FOR END TRANSOM

For loads of 40 tons (36.3 metric tons) or more, use cribbing and wedges under the midpoint of the end transom. This support will carry 40 percent of the weight of the heaviest tracked vehicle to pass over, and the area of the base of the cribbing should be large enough to spread the load over the ground wifhout exceeding the allowable bearing pressure on the soil. Seven 6 - by 6 -inch (15.2 centimeters by 15.2 centimeters) timbers 4 -feet 6-inches (1.4 meters long laid side by side provide enough area for all the bridge loads on soil that will carry 2 tons per square foot.

EXAMPLE FIELD

 DESIGN PROBLEMMISSION GIVEN: Design a Bailey to span the gap shown in Figure 4-17. Bridge must have Military Load Class (MLC) 60 wheeled/ 60 tracked. All data required is given in Figure 4-17.

Figure 4-17. Sife profile example

Figure d-fif, R pant pedestals in phace in tate-bay rampr

I. INITIAL BRIDGE DESIGN

(Steps 1 through 6)

1. Gap measured during reconnaissance (p 36)
. $1 . \frac{112}{1 .}$
a. Prepared abutment $=$ constant of 3.5^{\prime}.
b. Unprepared abutment $=1.5 \mathrm{x}$ bank height.

$$
\begin{array}{r}
\text { 2. NS } 1.5 \times 18^{\prime}=27^{\prime} \\
\hline \mathrm{FS} \quad 3.5^{\prime}
\end{array}
$$

3. Initial roller clearance. Always use a constant of 2.5'.

3. $\mathrm{NS}-2.5^{\prime}$

4. Initial bridge length.
a. Add steps $1+2+3$.

$$
\begin{aligned}
& 4 \mathrm{a} . \\
& \hline
\end{aligned}
$$

b. If value in step 4 a is NOT a multiple of 10 , round UP to the next highest 10 .

$$
\begin{aligned}
& \frac{4 \mathrm{~b} \quad \varnothing=\frac{1500}{}}{\text { 5. Initial truss/story type. Table A-7, p 303) }} \\
& \underline{5 . \quad D T}
\end{aligned}
$$

6. Initial bridge class. (Table A-7, p 303)
a. Class must meet or exceed the MLC given in the mission.
b. The truss/story type selected is always based on a NORMAL CROSSING unless otherwise directed by the TACTICAL COMMANDER.
II. ADJUSTED/Fi/60 $\frac{60}{}$.
7. Selection of grillage.
a. Safe soil bearing. Table 4-1, p 45)

7a. NS 2 tons $/ \mathrm{ft}^{2}$

FS 6tons/ft ${ }^{2}$

b. Safe soil pressure. Table 4-4, p 48). If the soil bearing capacify values from step 7 a are NOT listed in Table $4-4$, round DOWN to the closest value listed. Use these values for step 7 .

7b. $\frac{\text { NS } 2 \text { tons } / \mathrm{ft}^{2}}{\text { FS } 3.5 \text { tons } / \mathrm{ft}^{2}}$
c. Grillage required.

7c. NS Type(s) $4,6, \& 7$ FS Type(s) 2
8. Determine adjusted bridge length.
a Distance required for new roller clearance. Table 4-5, p 49)

8a. NS	N. ${ }^{\prime}$
FS	4.5^{\prime}

b. Add steps $1+2+8 \mathrm{a}$.

8b. 151.5
c. If value in step 8 b is NOT a multiple of 10, round UP to the next highest 10 .
$8 \mathrm{C}, \mathrm{Of}^{\circ}=160.0^{\circ}$
NOTE: Compare the value in step 8 c to the value in step 4 b . If different, you must redesign the bridge as outlined in steps 9 through 12 , using length from step 8 c to find truss type in step 9 . If not, use this as your final bridge length and go to step 13.

EINAL RRIDGE
 IRY 1 IRY2

9. Final truss/story type. Table A-7, p 303)

9. TT

10. Final bridge class. Table A-才, p 303)
a. Class must meet/exceed the MLC given in the mission.
b. The Truss/Story Type selected is always based on a NORMAL CROSSING unless otherwise directed by the TACTICAL COMMANDER.

10.8075 - $^{160 / 60}$

11. Final grillage selection.

b. Safe soil pressure. Table 4-4 p 48). If the soil bearing capacity values from step 11a are NOT listed in Table 4-4, round DOWN to the closest listed. Use these values for step 11c.

11b. NS 2 tomsit ${ }^{2} / 2$ tonsfit ${ }^{2}$
 FS 3.5 tons $/ h^{2} \mid 3.5$ tons $/ \mathrm{fl}^{2}$

c. Grillage required.

ES Typars) $6 \boldsymbol{e}$ I

12. Determine final bridge length.
a-Distance required for new roller clearance. Table 4-5, p 49)

12a. NS 3.51

b. Add steps 1+2+12a.

12b. $\quad 149.5$, 149.5
c. If value in step 12 b is NOT a multiple of 10 , round UP to the next highest 10 .
12. $A=1.4101510=1000$

NOTE: (1) FOR TRY 1: Compare the value in step 12c to the value in step 8c.
a. If the same, go to step 13.
b. If different, compare this value (step 12c) to the value in step 4 b :

1. If these are the same, the designer is placed in a judgmental situation. Repeating the design sequence under the "TRY 2" column using the bridge length from step 12c of "TRY 1" column will place you in an endless circle unless the final bridge length can be reduced. In these cases, one will have to use common sense and either overdesign a longer final bridge as shown in the "TRY 1" column or choose a higher number grillage than that originally selected in step 7c. The latter procedure could reduce the roller clearance on one or both banks so that the required bridge length/final trussstory may be at the minimum to do the job. You may choose a higher number grillage than allowed within step 11c; however, you must be careful not to
exceed the BP and RRT capacities listed in Table 4-2, p 46 and Table 4-3, p 47, FM 5-277. Make your decision and go to step 13. In this example problem, the designer chose to select Type 3 grilfage for the FS. Since this was not an option within step 11c he had to look at Tables 4-2 and 4-3) under a 150' DT bridge with a safe soil pressure of 3.5 tons/ ft^{2} to see if the BP and RRT capacities were exceeded:
Table 4-2 Table 4-3
BP Reaction BP Allowable $=55$ tons $=61$ tons OK
RR Reaction RRT Allowable
$=54.8$ tons $=60$ tons OK
Had the designer not accomplished this, he would have been forced to build the 160^{\prime} TT bridge shown under the "TRY 1" column and wasted a lot of assets.
2. If these are different, you must redesign the bridge by entering the "TRY 2" column with the bridge length from step 12c "TRY 1" to determine the truss/story type in step 9 .
NOTE: (2) FOR TRY 2 and HIGHER: Compare this value in step 12 c to the value in step 12 c of the previous "TRY" column. If the same, go to step 13. If different, use the same methodology and repeat the design sequence until the value obtained in a particular step 12c matches the value in step 12c of the previous design. Go to step 13.

13. Slope check. (p 45)

a. The maximum allowable bank height difference is 1 in 30 . Therefore, maximum allowable bank height difference $=$ final bridge length +30 .

13a. $150+30=52$

b. If:
(1) The step 13 a value \geq actual bank height difference the slope is all right.
(2) The step 13a value < bank height difference
(a) Choose another site, OR
(b) Crib up/excavate the FS or NS until the bridge slope is within limits.

13b. (GO)/NO GO(circle one)

REMARKS:

14. Final bridge requirements:

Length 150^{*}
Truss/Story Type DT

Class

$$
\underline{60 / 60}
$$

Grillage: $\frac{\text { NS Type } 6}{\text { FS Type } 3}$
15. Launching nose composition. Tables 6-1 through 6-3, p 64/65,Tables 7-17-2, p 95, or Tables 8-1/8-2, p 104, dependent upon truss type)
15. 9 Bays (5 Sgl Truss/4 Dbl Truss)
16. Placement of launching nose links.
a. Sag. (See tables as in step 15)

$$
\text { 16a. }-34
$$

b. Safety sag. (Constant of $6^{\prime \prime}$)

16b \qquad
c. Lift required. (Add steps $16 a+16 b$) $16 c$. \qquad
d. Position of launching nose links Figure 4-12 pg 50)

16d. 30 ' from tip of nose
17. Rocking rollers needed. Table 4-6, pg 51)
17.NS

FS \quad| 4 |
| :--- |

18. Plain rollers needed.
a. SS and DS bridges ONLY have two rollers per row. All others have four rollers per row. Use Table 4-7 to determine the number of rows then multiply.

18a. $4 \times 4=16$ rollers
b. Add two more plain rollers to allow for your construction rollers.
$18 \mathrm{~b} \frac{+2}{}$
c. Add steps 18a to 18 b.

18c. $=18$ rollers
19. Jacks required. Table 4-8)
19. 8 jacks

NOTE: Only one end of the bridge will be jacked down at any onetime.
20. Ramp requirements.
a. Slope requirements (check one)
(1) Final bridge class $\leq 50=1$ to 10 ().
(2) Final bridge class $>50=1$ to 20 (x)
b. Support for end ramp (check one)
(1) Final bridge class $\leq 67=2$ Chess (x).
(2) Final bridge class $>67=4$ Chess ()
c. Midspan ramp supports (check one)
(1) Final bridge class $\leq 44=$ Not needed ().
(2) Final bridge class $>44=$ Needed (x)
d. Pedestal supports (check one)
(1) Not needed ()
(2) Needed (x)

NOTE: See Page 53 for criteria and drawings.
Ramp length must be estimated from the site sketch.
e. Support for end transoms (check one)
(1) Final bridge class \leq Class $39=$ Not
needed ().
(2) Final bridge class $>$ Class $39=$ Needed
(x)
21. Personnel required. Table 3-2, p 33)
21. $7 / 122$ w/o Crane $7 / 97$ with Crane

NOTE: Check the difference between manpower only and crane construction.
22. Assembly time. Table 3-3, p 34)
22. $131 / 4$ hrs w/o Crane/ $113 / 4$ w/Crane

BRIDGE CLASSIFICATION

CLASSIFICATION OF
 EXISTING BRIDGES

Bailey bridge classifications may be determined by entering Table A-6 in Appendix A with the span length and truss type. This will give the classification of the bridge for normal, caution, and risk crossings. Table 4-9 gives restrictions for the types of crossing.

Notes: The caution class number is found by test and is normally 25 percent greater than the normal class. Risk loads will probably cause permanent deformation of bridge parts and may result in failure if repeated. Therefore, the engineer officer must thoroughly check the condition of the bridge before and after such a crossing. The grillage, cribbing, and number of transoms per bay must also be checked and the bridge class reduced or upgraded to obtain the required classification. The condition of the bridge and its supports must also be considered in its classification. If the bridge is deformed or damaged, the grillage has rotted, or the abutment has failed, the bridge classification must be drastically lowered.

EXAMPLE:
 Given:
 Bridge length-80 feet (24.4 meters)

Truss type-double-single
Grillage-none
Soil-bearing capacity-10 t/sf

Table $4 . y$ Eaidty briffar erpaling Fentrictionn

	HORAAL	TRAFFICRESTRICTIOH15 CAUTION	RISK
Yelucly potilum Man fpand Cparition	Napplace on erk 25 mph thintaline	On tewnalion en ack $4 \boldsymbol{m}$ He slopping, actetaraling, or gan shifing	me cancurline at onct 3 mph by clutch ond
Wun ipzant	$30 \cdot y 4$ taililar mend convay spatime		One vehitle en buspe al a 14.ace
Authouly to ast	HRy04	Tactieal aran eommonder finermally ecrpa ar highary	

Cribbing-none
Condition-excellent

Required:

Determine the normal track classification of the bridge without upgrading

Solution:

Take the following steps:
1 Class- 55 track (from Table A-6 in Appendix A)

2 Grillage-install type 1 as a minimum (Table 4-4)

3 Cribbing

Midspan ramp supports
None-limits class to 44 tons
(39.9 metric tons)

End transoms
None-limits class to 39 tons
(35.4 metric tons)

4 Condition-excellent, no reduction

5 Final classification-39 track. The overall classification is determined by the lowest classification of steps 1 and 3 .

CHAPTER 5

ROLLER LAYOUT

This chapter describes the longitudinal and lateral spacing of rocking rollers and plain rollers. The elevation of rollers and base plates, as well as a simple method of leveling and placing rollers, is discussed.

LAYOUT OF ROCKING ROLLERS

Establish the longitudinal location of the rocking rollers by the safety setback determined in the field design of the bridge. To determine the lateral spacing, place a rocking roller (Figure 5-1, page 58) on each side of the bridge 7 feet 5 inches (2.26 meters) from the centerline Figure 5-2, page 58). This gives a constant value of 14 feet 10 inches (4.52 meters) between the centers of the rocking rollers. Most bridges are double- or tripletruss and need another set of rocking rollers Figure 5-3, page 59) placed 1 foot 6 inches (. 46 meter) out from each of the first set of rocking rollers (Figure 5-4 page 59).

Rocking-roller templates have been made which help the proper 1-foot 6 -inch (. 46 meter) center-to-center spacing of the rocking rollers. On the interior side of these templates, smallangle iron lugs are attached to aid roller spacing. The edge-to-edge spacing of the rocking-roller templates (lug to lug) is 11 feet $61 / 2$ inches (3.51 meters) (Figure 5-4). The lugs are, however, frequently lost through use and the most accurate method of spacing the rollers is to use the 14 -foot 10 -inch (4.52 meters) constant. The Bailey bridge transom is manufactured with a small hole in its
center web and two dowel holes toward each end. These holes can be used to properly space the rocking rollers, as shown in Figure 5-5 (page 60).

LAYOUT OF PLAIN ROLLERS

To determine longitudinal spacing, place two or more plain rollers every 25 feet (7.6 meters) behind the rocking rollers to support the bridge during assembly and launching. Place temporarily an extra set of plain rollers (called construction rollers) $121 / 2$ feet (3.8 meters) behind the rocking rollers. The construction rollers aid in inserting the launching-nose links and provide clearance between the links and the ground. Remove these construction rollers after the links have passed over the rocking rollers.

To determine lateral spacing, for single-story, single- and double-truss bridges, place two plain rollers one on each side of the centerline every 25 feet (7.6 meters). The center-to-center roller spacing is 14 feet 10 inches (4.52 meters) or 7 feet 5 inches (2.26 meters) each side of the centerline. Plain rollers are normally placed on plain-roller templates which increase the bearing area over the ground. These templates also aid in the lateral spacing of the rollers. The templates are equipped with angle iron lugs, like the rocking-roller templates. Place the template so the lugs face the centerline. The distance between lugs, then, is 11 feet $61 / 2$ inches (3.51 meters) Figure 5-6, page $60)$.

For all other assembly types use four plain rollers every 25 feet (7.6 meters), two on each side of the centerline. Each plain roller consists of two small independent rollers. For triple-truss or multistory bridges, place the inside plain rollers so that the inside truss will rest upon the second small roller Figure 5-7, page 60). The spacing between the centers of these small rollers, then, is 14 feet 10 inches (4.52 meters). Place the other set of plain rollers so that the second truss will rest on the first small rollers of this set (Figure 5-7). The distance between these trusses is 1 foot 6 inches (. 46 meter). The third truss will rest on the outermost small roller. Plain-roller templates also aid in lateral spacing of the plain rollers for the triple-truss or multistory bridges. Use one template under each roller. Place two templates end to end on each side of the centerline, with the angle iron lugs of the inside templates facing center and the outside lugs facing away from center. When the spacing between the inside lugs is 10 feet 10% inches (3.31 meters), the plain rollers will be at the proper spacing (Figure 5-7).

BASE PLATES

Establish, by the type of grillage required, longitudinal spacing between the center of the rocking rollers and the center of the base plate. The grillage type is determined as described in Chapter 4 To establish lateral spacing, place the base plates under the trusses as shown in Figure 5-9 (page 61).

Space the bearings on the base plates (under the trusses), as shown in Figures 5-8 (page 61) and 5-9.

GRILLAGES

Figures 4-5 through 4-11 show the size of the areas to be leveled off to accommodate the grillages. Take care that the rocking rollers and base plates are properly positioned when placed on the grillage. The grillage can be cribbed up or dug in as needed for leveling.

ELEVATION OF ROLLERS AND BASE
 PLATES

Set the base plates at an elevation to keep the slope of the ramp bays less than 10 to 1. Also, allow for the depth of wear tread. Set all rollers (both plain and rocking), except the construction rollers, so their tops are in the same horizontal plane. Normally this plane is level, but a slight inclination, not to exceed 30 to 1 slope along the line of the bridge, is permissible. Set the construction rollers 2 to 4 inches (5.1 to 10.1 centimeters) below the level of the other rollers. Placing the far-bank rocking rollers a few inches lower than the plane formed by near-bank rollers allows for near-bank settlement caused by bridge weight.

PLACEMENT CONTROL LINES

 A simple method of leveling and placing rollers is the use of placement control lines. The bridge centerline is first placed and extended 25 feet (7.6 meters) on the far shore and the length of the bridge and launching nose on the near shore. Then position two placement control lines parallel to and 7 feet

日AトDGE
 2 ROCKINA ROLLER
 3 EEMAIMG
 AOCKING ROLLER TEMPLATE
 5 8OTTOH CHOAO OF TRUS5

5 inches (2.26 meters) to either side of the centerline. Position the placement control lines level with the proposed plane of the rollers. Use line levels at several spots on the placement control lines to ensure that they are level. It is also important to ensure that the placement control lines are parallel to the centerline. The rollers can then be cribbed up or dug in as needed to bring their tops to the level of the placement control lines (Figure 5-10, page 62).

 forsh and DN Balley brialges

Figure fi-7 Laterat qpacing of piain rofiern for (rypte-trate and maifiriery Railfy bridgce

Fugare Shl Dise of bowe phate ant bepringe ander

Angle-, dowble-, and triple-trus! bridices

ASSEMBLY OF DOUBLE-SINGLE BRIDGE 71
 ASSEMBLY OF TRIPLE-SINGLE BRIDGE 83
 LAUNCHING, JACKING DOWN, AND RAMPING 85

 REINFORCING BRIDGE AND CONVERTING BRIDGE 91

 REINFORCING BRIDGE AND CONVERTING BRIDGE 91}

This chapter describes the assembly and composition of double-truss single-story and triple-truss single-story bridges and their respective launching noses. The assembly of single-truss single-story bridges, which have little carrying capacity, is the same as that for the launching nose (Figure 6-1). This chapter also covers the launching, jacking down, and ramping of these bridges. The
procedure for adding extra trusses to increase the class of single- and double-truss bridges is also covered.

Single-story bridges are normally assembled and launched by manpower. They can be assembled on the rollers and launched or the bridge and nose can be pushed out over the gap after every two bays are assembled.

Fïमurc 6 I Lammening mose

LAUNCHING NOSE

COMPOSITION
The number and types of bays used in the nose depend on the length and truss type of the bridge. The composition of the launching nose for the various lengths of the singlestory bridge is given in Tables 6-1 through

6-3. These tables must be followed exactly with respect to the composition of the launching nose. Assembly of the launching nose is the same for all three types of singlestory Bailey bridges.

Table 6.d daunching-nata montronition for \$\$ brideca

Tohde ti2 Ladnehinf-hofe compnaltiof for DS bridfice

Nant

ASSEMBLY AND LAUNCHING

After roller layout is complete, proceed with assembling and launching of nose as follows:

1 Place two panels (female ends forward and male ends resting on construction roller) on the ground directly behind the rocking rollers. Clamp the transom to the
panel behind the forward uprights. Secure rakers to transom and panel with bracing bolts Figure 6-2, page 66).

2 Connect second bay Figure 6-3, page 67). Insert panel pins (points outward) with grooves in the heads of pins horizontal. Clamp transom to panels behind forward uprights.

3 Place pair of sway braces in second bay.
4 Lift front end of assembled bays onto rocking rollers Figure 6-4, page 68) and secure with steel pickets through hottom chord of panels and rocking rollers (Figure 6-5 page 69) to prevent rolling.
An alternative method (for rocking rollers on low cribbing) is as follows:
a Assemble first bay on ground.
b Lift front end of bay onto rocking rollers Figure 6-6, page 70) and secure with steel pickets.
c Raise rear end and slide construction rollers under it 2 inches (5.1 centimeters) below plane of tops of rollers. This places construction roflers approximately 9 feet (2.7 meters) from rocking rollers.
d Add second bay.
5 If required, place launching-nose links in position between panels as determined by assembly conditions. See Chapter 4 to determine the number of links and their position in the nose.

6 Continue adding panels with a transom every 10 feet (3.0 meters). Add sway braces in every bay and rakers on every transom until the required amount of skeleton is built.

FM 5-277

fülure is Laanching nowe, initial bay aneomblead

tiantry 6y Launching note, aseond bay monnerted to inttial bay

Noter

figure is Alicrnative method for anawnpling taunching nowe when rocking rotterrare on tow eribbing

ASSEMBLY OF DOUBLE-SINGLE BRIDGE

FIRST BAY OF BRIDGE
When assembly of the nose is completed, assemble the first bay of the bridge as follows:

1 Connect first two panels of inner truss with last bay of nose (Figure 6-7). Insert panel pins with points outward and grooves in heads of pins horizontal. Place transom roller on top of the lower panel chord at the transom location. Hook the bottom angle lug of the roller over the near side of the top flange on the chord to hold the roller assembly in position. Lift the head of the transom onto the roller and shove it halfway across bridge width, at which point two soldiers should guide it to its seat on the panel chord. Then raise the near end of the transom enough to permit removal of the roller. Place the first transom in front of the middle vertical and clamp loosely with transom clamps. Then move the transom roller to each succeeding transom point.

2 Add panels of outer truss in first bay and hold in place with transom clamps Figure 6-8, page 72)

3 Insert second transom in front of rear vertical and third transom behind front vertical. Clamp loosely. Fix rakers to second transom and panel (Figure 6-9, page 73). Then position sway braces with short ends pinned to same side of bridge so both turnbuckles are under one stringer. All sway braces, transom clamps, bracing frames, rakers, and tie plates in one bay should be left loose until all parts
except stringers and decking are fitted for the next bay being assembled.

4 Add second bay of panels (Figure 6-10, page 74). Place outer truss with panel pins pointing inward and inner truss with panel pins pointing outward.

5 Place a chess on top of transom behind front vertical in first bay and position stringers for first bay. Leave stringer over sway-brace turnbuckles on edge until sway braces have been tightened (Figure 6-11, page 75). After bridge has been launched and end-post transom is inserted, the chess holding up the stringers and decking in the first bay can be pushed clear with crowbars, and decking will drop into position.

6 Position panels of third bay. As panels of the third bay are being placed, insert transoms in second bay, one in front of middle vertical and one in front of rear vertical Figure 6-12 page 76).
7 After transoms are in position in second bay, fix sway braces, rakers, and bracing frames loosely Figure 6-13, page 77). Rakers are installed only on the transoms at the end verticals.

8 Tighten bracing in first bay, and deck first bay (Figure 6-14, page 78).

REMAINDER OF BRIDGE

Assemble the remainder of the bridge as follows:

1 Position stringers in second bay and leave stringer over sway-brace turnbuckles on edge until sway braces have been tightened (Figure 6-15, page 79).

2 Add fourth bay of panels and at same time insert transoms in third bay Figure 6-16, page 80).

3 Add bracing in third bay. Tighten bracing in second bay, and deck second bay Figure 6-17 page 81).

The sequence is complete. Use the same sequence for the rest of the bridge. Do all jobs at the same time; the sequence is used to prevent crowding of assembly and carrying parties.
Normally, footwalks are not used. However, when time, troops, and materials are available, footwalks can be assembled. Footwalks should be assembled before launching because it is awkward to place bearers and footwalks after bridge is in place. Attach bearers to all transoms. They fit over and under special lugs welded to the transom. Position footwalks by lugs on bearers. Insert footwalk posts in sockets at the ends of bearers and thread hand ropes through the eyes of the posts. Figure 6-18 (page 82) shows the completed footwalk.

Pigure 6 io Firnt bay, DS, \#fteanhly-tecond bay of pamelo added

Notes

בum

Notes
בuren

ASSEMBLY OF TRIPLE-SINGLE BRIDGE

METHOD OF ASSEMBLY

The method of assembly for the triple-single bridge is similar to that for the double-single bridge. The assembly of the outer truss in one bay must be delayed, however, so panel pins in the second truss can be inserted. In addition, use short pins in the middle and outer truss end posts because normal length pins will not fit.

FIRST BAY OF BRIDGE

Assemble the first bay of the bridge as follows Figure 6-19 page 84):

1 Connect first two panels of inner truss with last bay of nose. Insert first transom in front of middle vertical and clamp loosely with transom clamp.

2 Add panels of middle truss in first bay and hold in place with transom clamps.

3 Insert second transom in front of rear vertical. Attach rakers and position bracing frames and sway braces. The construction transom behind front vertical is omitted until the outer truss in the first bay has been positioned.

4 Add middle truss panels in second bay. This panel must be positioned before the outer truss panel in the first bay so panel pins can be inserted.

5 Add outer truss panels to first bay. Position construction transom behind forward verticals in first bay. Add inner truss panels to second bay.

6 Place chess on the construction transom and position stringers in the first bay.

7 Position middle truss panels in third bay. As panels are being placed in the third bay, insert transoms in second bay, one in front of the middle vertical and one in front of the end vertical.

8 Add bracing in second bay. Tighten bracing in first bay, and deck first bay.

REMAINDER OF BRIDGE

Assemble the remainder of the bridge as follows:

1 Position outer truss of second bay. Connect to middle truss with tie plates bolted to top raker holes in forward verticals of panels Figure 6-21, page 85). Add inner truss of third bay Figure 6-19). Figures $6-20$ (page 85) and 6-21 show the position of panel pins in triple-single bridge.

2 Place stringers in second bay. Position middle truss panels in fourth bay, and at same time insert transoms in third bay Figure 6-19.

3 Add bracing in third bay. Tighten bracing in second bay, and deck second bay (Figure 6-19).

The sequence is complete, and the same sequence is used for the rest of the bridge.
When loads greater than class 70 are to be carried, such as an 80 -foot (24.4 meters) triplesingle bridge, four transoms per bay are required. The procedure for assembling the transoms in the first bridge bay is the same. In addition. a fourth transom is added behind the center vertical. In order to clamp both transoms at the center vertical, the transom held behind the vertical should be clamped to the inside trusses and the other to the outside trusses. In all subsequent bays, the four transoms are placed in regular order, the first behind the front vertical, one in front of the center vertical, one behind it, and one in front of the rear vertical.


```
TRANSOM 8 CHESS
RAACING FRAME STIE PLATE
3 RAKER
SIWAY ERACE
5 MIODLE TRUSS
5 STRINGER
TCONSTRLCTIOM TRANSOM AND CHE55
```

Finure 6 I9 Avicnibly of TS bridefe

 pine in main part ar tridfe

Figats 6.ga The plater betunpeq tationd and thind thuncel and nhort panct pina in and poratr in TS brider

LAUNCHING, JACKING DOWN, AND RAMPING

USE OF COUNTERWEIGHT

During launching, the entire bridge (including the nose) must be counterbalanced so the structure does not tip into the gap. The counterbalance is normally obtained by adding enough bays of bridge behind the near-shore rocking rollers to act as a counterweight, keeping the balance point between the plain rollers and the rocking rollers. This condition must prevail until the launching nose reaches the rollers on the far bank. The point is illustrated in Tables 6-1 through 6-3 which show the bridge and launching nose just spanning the gap. In this position, the bridge is completely assembled and the balance point is slightly behind the nearshore rocking rollers. As the bridge is pushed across the gap from this position, the balance point passes the rocking rollers. The part of the bridge acting as a counterweight is no
longer needed to maintain balance since there is now no danger of it tipping into the gap.

Note: Counterbalance is still needed, however, to avoid excess stress in the launching nose until launching is complete. Dismantling any part of the bridge behind the rocking rollers will throw additional stress on the launching nose and on the part of the bridge which is across the gap. This may result in failure of the nose.

Caution: The near-bank rocking rollers and the far-bank rocking roIlers must carry the entire load after the launching nose reaches the farbank rocking rollers (Figure 6-22, page 86). The launching nose may fail if the near-bank plain rollers are per-
mitted to carry any load after the nose reaches the far-bank rocking rollers. The rear of the bridge must hang free to act as a counterweight. This is done by cribbing up the near-bank rocking rollers, or removing plain rollers so the rear end of the bridge does not rest on them after the launching nose reaches the far-bank rocking rollers.

If removal of plain rollers does not provide the required clearance, excavate until the overhang is free of the ground. If the far-bank rocking rollers are placed several inches below the level of the other rollers, the entire weight of the bridge on the near-bank rocking rollers will be offset so that the resulting launching plane will be level or err on the safe side. In addi-

tion, the extra 6 -inch (15.2 centimeters) safety allowance in the positioning of the launching-nose links will help prevent an unsupported length of bridge from the far-bank reeking rollers to the first near-bank plain rollers from being clear of the rocking rollers. Once the links have passed over the far-bank rollers, check the launching plane. If too much settlement has occurred on the near bank, remove the plain rollers.

LAUNCHING

After the nose and first bay of the bridge have been completed, proceed with launching as follows:

1 One pair of plain rollers has been placed 25 feet (7.6 meters) behind the near-bank rocking rollers. Additional plain rollers
are not required when launching bridges up to 80 feet (24.4 meters) long. Bridges over 80 feet (24.4 meters) long require additional sets of plain rollers spaced at 25 -foot (7.6 meters) intervals. Bridges are assembled on the rollers. When necessary,
jacks are used to aid insertion of the lower panel pins of panels resting on rollers.

2 Continue assembly of bridge and pushing it out on the rollers (Figure 6-23). When the forward end of the launching nose

Fighe if 2f Launching manc approaching far bordi, rockitg moliert in jrice
reaches the rollers on the far bank (Figure $(6-24)$, a detail guides it onto the rollers Figure 6-25, page 88) and dismantles it bay by bay.

3 When the end of the bridge proper clears the rollers on the far bank, attach the near-bank end posts. At the same time, attach the far-bank end posts and lay a transom across their steps. The middle and outer truss end posts on the tripletruss bridge are pinned with short panel pins and tied together with tie plates in the raker holes. Pins in middle truss end posts are inserted with points outward and in outer truss with points inward (Figures 6-20 and 6-21). Normal pins and methods of pinning are used on the inner-
truss end posts. Remove construction chess behind the front vertical in the first bay so decking drops into place.

Take the following precautions when completing the assembly and launching

- Do not use bent or distorted parts.
- Do not attempt to convert the launching nose into the bridge by adding parts to it.
- In launching the bridge over rollers, keep the center of gravity behind the rocking rollers until the launching nose reaches the far bank. Thereafter, do not dismantle the bridge behind the near-bank rocking rollers or remove the counterweight until
all of the launching nose has cleared the far-bank rocking rollers.
- After the launching nose passes over the far-bank rocking rollers, always make certain the weight of the bridge is carried only by the near-and the far-bank rocking rollers.

JACKING DOWN

After the end posts and end transom have been installed, proceed with jacking down as follows:

1 Place jack shoe in baseplate and jacks on shoes with toes of jacks under steps of end posts (Figure 6-26, page 88). Only enough room is present to work four jacks at one end of the bridge. More jacks may be placed under a transom only when held by end posts. To prevent failure of jacks, use them in unison so the load is distributed evenly between them.
Note: Pitch of teeth may vary in jacks of different manufacture. Jacks used together must always have the same pitch. Check jacks to ensure that they have the same manufacturer's name.

2 Jack up the ends of the bridge successively and remove the rocking rollers. Place bearings on baseplate as shown in Figure 5-9.

3 Lower bridge in stages Figure 6-27 page 89). Place cribbing under the bottom chord of the trusses to catch the bridge if it slips

fighav it Lf litur ofjacking oporntion whow'ing thip pandement or the jack, incth there, and bearint
off the jacks. It does not matter which end of the bridge is lowered first, but the jacks must be operated in unison.

Note: Jacks must be operated on only one end of the bridge at a time.

RAMPING
Refer to already determined design in Chapter 44 for installing cribbing and supports Figure (6-28). Position ramps and add decking Fisgure (6-29) page 90). Brace approach to ramps, and bridge is complete.

REINFORCING BRIDGE AND CONVERTING BRIDGE

PROCEDURE

The class of existing single- and double-truss bridges can be increased by adding extra trusses. Construction starts from the center of the bridge, and panels are added toward each end. Panel levers are used to aid in positioning the extra panels (Figure 6-30).

For all assemblies over class 70, the deck system must be reinforced by increasing the number of transoms per bay from two to four and by adding a 3 -inch (7.6 centimeters) longitudinal wear tread. These transoms can be threaded a bay at a time from inside the bridge.

CONVERTING SINGLE-SINGLE
 TO DOUBLE-SINGLE

To convert a single-single bridge to a doublesingle bridge, proceed as follows:

1 Remove footwalk (if any).
2 Position first panel at center of bridge.
3 Lower panel over side with chain or rope slings at ends of panel and position with levers (Figure 6-30).

4 Insert transom clamps and tighten. Tightening transom clamps helps reduce effect of sag.

Pighie if th Inameting panch of nuter truan

5 Position second panel, insert transom clamps, and tighten. Insert panel pins (point inward) first in bottom and then in top of panel.

6 Connect outer truss to inner truss with bracing frames bolted to top chord. Continue adding panels toward each end of bridge.

7 Jack bridge off bearings (ramps need not be removed) and install end posts.
Caution: At the end of bridge where the transom is in the end post, panel and post must be added as one unit.

8 Position bearings for double-truss assembly, jack bridge down on bearings, and replace footwalks (if any).

9 Check to ensure that the existing grillage is strong enough to carry the reinforced class.
Figure 6-31 (page 92) shows a complete double-single bridge with footwalk.

Foutury irid DS bridec wish footumalh

CONVERTING DOUBLE-SINGLE
 TO TRIPLE-SINGLE

To convert double-single bridge to a triplesingle bridge, proceed as follows:
1 Use same procedure as for converting single-single to double-single bridge, through insertion of panel pins in top and bottom of panel.

2 Connect outer truss to middle truss with tie plates bolted to top raker holes in the same upright of successive panels Figure 6-20). Continue adding panels toward each end of bridge.
3 Jack bridge off bearing (ramps need not be removed) and crib under first and second truss (Figure 6-32).

Note: Cribbing must not extend out beyond second truss.

4 Install end panel and end post by raising into position with levers Figure 6-33).
Caution: At the end of the bridge where the transom is in the end post, the panel and post must be added as one unit.

5 Insert panel pins, point inward, slot horizontal. Add tie plates.

6 Shift bearings for double-truss assembly to bearings for triple-truss assembly. Jack down bridge on bearings Figure 6-34.

7 Replace footwalk if needed.
8 Check to ensure that the existing grillage is strong enough to carry the reinforced class.

Figure 5.je Doublc-crucs bridje jacked'up
 hofore intertions of oucter irines

Figure 6-3f doching dowut aftar inperting the okter bupl and shlfing bearingl

ASSEMBLY OF DOUBLE-STORY BRIDGES

THE DOUBLE-DOUBLE BRIDGE 94
THE TRIPLE-DOUBLE BRIDGE 97

LAUNCHING AND JACKING DOWN 98

REINFORCING BRIDGE AND CONVERTING BRIDGE 99

Methods of assembly for double-story bridges are similar to those used for single-story bridges. The second-story panels, however, can be hand carried from trucks or other platforms. Truck-mounted cranes, 5-ton wreckers, or gin poles can also be used. It is

FIRST BAY OF BRIDGE

When the nose is completed, proceed with the first bay of the bridge as follows:

1 Assemble three bays of double-single bridge as shown in Figure 7-1 (page 96) and as described in Chapter 6.

2 Begin double-story assembly in the first bay of bridge with a separate working party (Figure 7-1). Continue bottom-story assembly at the same time, using the procedure for the single-story bridge. The second story always lags by two bays. Use an erection platform when placing second-story panels. Footwalks can be used as a working platform or panels can be hand carried from trucks maneuvered alongside the bridge (Figure 7-2, page 96).
possible to assemble the second story during bridge assembly or after the bridge has been entirely launched. It is preferable, however, to assemble the entire bridge before pushing it across the gap. The same methods of launching are used as for single-story

THE DOUBLE-DOUBLE BRIDGE

Panels must be loaded on trucks to allow standing room in the truck for the working parties. The second story is assembled as follows:
a Lift panel from truck at side of bridge. Place flat on top chord of bridge. Slide panel in toward center of bridge.
b Lift panel upright. Pivot so it is parallel to existing truss. Position and pin panel. Insert chord bolts, but do not tighten them.
c Repeat process with panels on outer truss.
d Position bracing frames on front and rear verticals and on top chord.
assembly. For long heavy bridges, it maybe necessary to use trucks or a bulldozer. The composition of the launching nose for the various combinations of spans and truss types is given in Tables 7-1 and 7-2. The tables must be followed exactly.
e Tighten chord bolts and bracing frame bolts.
f When footwalks are not used and trucks cannot be maneuvered alongside the bridge, second-story panels can be placed from a temporary deck inside the bridge or by the use of gin poles.

REMAINDER OF BRIDGE

The remainder of the bridge is built the same as the first bay except that bracing frames are positioned only on the rear yerticals and top chord of the second story (Figure 7-1). When enough bays of bridge have been built to counterbalance the nose, move the bridge forward so the first bay is over the rocking rollers. Movement will not be necessary again during assembly unless the overhang at the
tail causes excessive sag. When adding panels from outside the bridge, place inner panels first with panel pins inserted from the outside. Then place outer truss panels with pins inserted from the outside. When adding panels from inside the bridge, place the outer panels first and insert all pins from the inside.

METHOD OF ASSEMBLY

The triple-truss, double-story assembly (Figure 7-3) is essentially the same as double truss, double-story assembly. With triple-truss assembly, however, the outer truss in both the lower and second story must lag by one bay to allow insertion of the panel pins in the middle truss when panels are added from outside the bridge. When second-story panels are added from inside the bridge, the inner and middle trusses must lag by one bay to allow insertion of the panel pins in the outer truss.

LAUNCHING NOSE

The composition of the launching nose is the same as that for the double-double bridge. For the length and assembly of nose required for various spans, see Table 7-2.

FIRST BAY OF BRIDGE

When assembly of the nose is completed, proceed with the first bay of the bridge as follows:

1 Assemble four bays of single-story bridge as shown in Figure 7-4 (page 98) and described in Chapter 6.

2 Add double-story assembly using the same assembly method as for the double-double bridge Figure 7-1.

3 Position bracing frames on the front and rear verticals and on the top chord of the first bay of bridge before the chord bolts are tightened.

REMAINDER OF BRIDGE

Assemble the remainder of the bridge the same as the first bay, but position bracing frames only on the rear verticals and top chords of the second story. Connect outer truss to middle truss with tie plates bolted to the top raker holes in the forward panel uprights of both stories. See Chapter 4 for ramp construction and Chapter 9 for traffic control.

LaUNCHING AND JACKING DOWN

LAUNCHING

Launching of double-story bridges normally begins after the assembly of the entire bridge. Use the same launching methods and precautions as for launching single-story bridges. When launching with bulldozers or trucks, take the following precautions:

- Do not apply power directly to the end of a panel except at the junction of the di-
agonals. Apply it against the end posts, or a transom at the junction of the diagonals Figure 7-5. When applying power against a transom, make sure it is distributed across the length of the transom.
- Roller heights must be fixed so that the tail of the bridge is at least 6 inches (15.2 centimeters) off the ground during the entire launching.
- Rig a line to control lateral movement of the bridge.
- If the bridge requires two trucks or bulldozers to move it, use one against the end post of each girder.
- When using a bulldozer, bolt ribbands at the tail of the bridge so they extend beyond the end of the bridge. Place a

transom on its side on the ribbands so the transom rests against the end vertical at the junction of the diagonals. Face transom lugs toward the nose of the bridge. Control lateral movement of the bridge by fastening winch lines from two trucks to male panel holes for positive control. Launch the bridge with the bulldozer blade pushing against the transom (Figure 7-5).

JACKING DOWN

Use the same jacking methods and precautions used for single-story bridges Chapter (6).

Fïnare 75 Uring bulldoter to fanneh brider

REINFORCING BRIDGE AND CONVERTING BRIDGE

METHOD

The class of existing single-story bridges can be increased by adding extra stories. For all assemblies over class 70 , the decking system must be reinforced by increasing the number of transoms per bay from two to four, and by adding a 3 -inch (7.6 centimeters) longitudinal wear tread.

CONVERTING DOUBLE-SINGLE TO DOUBLE-DOUBLE

To convert an existing double-single bridge to a double-double briage, proceed as follows:
1 Remove bracing frames.
2 Carry first panel to midpoint of bridge and place on top chord of existing bridge.

Erect outer truss first Figure 7-6, page 100). Before raising panels, insert wrenches in the top chord of the existing bridge to prevent the panel from skidding out. The inner truss assembly should follow closely behind the outer truss in order to speed construction.
3 Insert chord bolts and panel pins. Where necessary, use chord jacks Figure 7-7, page 100) to overcome sag when inserting panel pins. Tightening chord bolts also helps reduce difficulty caused by sag. Chord jacks are not required when adding a second story to double-truss spans 120 feet (36.6 meters) or less in length if the following method is used simultaneously on both sides of the bridge:
a Place first panel of second story at center of bridge and insert chord bolts. Do not tighten bolts.
b Place a panel at each end of the center panel of the second story. Insert chord bolts and upper panel pins.
c Tighten all chord bolts to reduce sag. Drive lower panel pins with a sledge hammer.
d After the first three panels are in place, add other panels, one at a time, working toward both ends of the bridge.
e As each panel is placed, insert chord bolts. Do not tighten until the upper panel pin has been inserted.
f It maybe necessary to drive upper and lower panel pins simultaneously, starting at the ends of the bridge. Tighten chord bolts to reduce sag.
g Place bracing frames vertically on the same end of successive panels and horizontally along the top chord of the second story.
See Figure 7-8 for partially completed bridge.

Edgute 7.6 Oafer semand- thoty panet in payition before inacrition of punel gine

1 Ratchet leyer
2 CHOAO JACS FRAM*
3 BCLT TMROUGH ChORO
4. JACK SCAEV

5 PAMEL
G CHORD JACK HAMDLL

Purare 7.2 Chord jack in purition on top othord

Fizare $7-$ don $^{\text {Converting }} \boldsymbol{O S}$ to $D D$ bridge in poottion

LAUNCHING NOSE AND OVERHEAD BRACING 103
THE DOUBLE-TRIPLE BRIDGE 107
THE TRIPLE-TRIPLE BRIDGE 107
ASSEMBLY OF BRIDGES WITH UNDERSLUNG STORY 109

This chapter describes the assembly and composition of triple-story bridges and their launching noses. The normal cantilever method used for launching single- and double-story bridges is used for launching triple-story bridges. However, some triplestory bridges must be launched incomplete to reduce launching weight.
Triple-story bridges are normally assembled by truck-mounted cranes. If cranes are not available, parts can be placed with gin poles, 5 -ton wreckers, or carried by hand. Triplestory bridges can be assembled with all three stories above the decking system (Figure 8-1) or with one story underslung (Figure 8-2). When all three stories are above the decking system, the top chord of the upper story must be braced laterally with transoms and sway braces. When one story is below the decking system, lateral bracing in the bottom chord of the underslung story is required only when the wind velocity is more than 50 miles (80.6 kilometer) per hour. The class of triple-story bridges is not affected by the location of the deck or by the omission of one story of panels in each end bay.

Figuresi 2 Tripif.ntory bridien with winder*iung ntary

LAUNCHING NOSE AND OVERHEAD BRACING

LAUNCHING NOSE ASSEMBLY AND COMPOSITION

Assembly of the launching nose for triplestory bridges is the same as for single- and double-story bridges. However, the launching weight of the nose and bridge is limited by the 120 -ton (108.8 metric tons) capacity of the near-bank rocking rollers and the lowerbridge chords which they support. The composition of the launching nose for the various combinations of span and bridge assembly is given in Tables 8-1 and 8-2 (page 104). These tables must be followed exactly.

OVERHEAD BRACING

The upper story of triple-story bridges, with all three stories above the floor system, is braced by using overhead-bracing supports
with transoms and sway braces on the top chord of the upper story (Figure 8-1). Another method is to invert the third-story panels and place transoms and sway braces in their normal seating on the inverted panels.

With overhead-bracing supports

 When overhead-bracing supports are used, place one support per girder on each bay of the bridge. Position the supports on panels of the inner and second truss over the chord-bolt holes nearest to the female lugs. This provides clearance for the bracing frames on the top chord. Fasten transoms to the tops of the supports and pin sway braces to the projecting ears on the supports (Figure 8-3, page 105).
Without overhead-bracing supports

 When overhead-bracing supports are not used, the panels of the third story must be inverted so that transoms and sway braces can be inserted (Figure 8-4 page 106). Transoms are fitted on the transom seats beneath the upper chord of the top story and are held in place by transom clamps. Sway braces are placed in the sway-brace holes in the sides of the upper chord of the third-story panels. One transom and two sway braces are used per bay.Y'able E'S Launchimgeneme chmponition for i) briditew

[^0]

Nam

Prypry s.y Lonation of brider porto in wrerhead bracing of DT bridft

THE DOUBLE-TRIPLE BRIDGE

DESCRIPTION

Double-triple bridges are normally assembled bay by bay on rollers and launched complete. Some of the longer, spans, however, must be launched incomplete to reduce the launching weight.

METHOD OF ASSEMBLY

When assembly of the nose is completed, assemble the first bay of the bridge as follows:

1 Connect inner and outer truss panels to last bay of nose. Assemble parts into place.

2 Add transoms, bracing, and decking in the same way as for single-story bridges.

3 Add panels to second and third story with cranes. Stockpiles are located near cranes

DESCRIPTION

Triple-triple assembly is uncommon. Its heavy launching weight could cause failure of the rollers or lower chord of the bridge. For this reason, special methods must be used for assembling triple-triple bridges.

ASSEMBLY AND LAUNCHING

Triple-triple bridges can be launched incomplete or by using a temporary launching pier. Triple-triple bridges are launched incomplete, using the assembly given in Table 8-2, to reduce launching weight and prevent overload of the rollers. The bridge is assembled and launched as follows:
to aid handling. Place bracing frames on front and rear panel verticals in second and third stories and on top chord of third story.

4 Lift overhead-bracing supports with cranes and position over chord-bolt holes nearest female lugs of panels. Bolt to girder on one side of bridge only. Bolts on other side are left out because bolt holes may not line up when transom is placed on supports, since the girders tend to lean slightly toward center.

5 Position overhead transom and fasten by the two clamps on each support.
6 Insert jack between support that is not bolted and outer truss of bridge. Force

THE TRIPLE-TRIPLE BRIDGE

1 Assemble nose and partial bridge exactly as shown in Table 8-2 according to span length, and launch to far-bank rollers using normal methods of assembly and launching.

2 Continue launching bridge over gap until near-bank rocking rollers are under last triple-triple bay of bridge. Dismantle nose beyond far-bank rocking rollers (Figure 8-5 page 108).
3 Make near-bank end double-triple bay triple-triple, and add enough triple-triple bays to obtain required bridge length (six
girders out and insert two chord bolts in the support.

7 Position overhead sway braces but do not tighten until overhead transom in next bay has been fixed.

8 Place the rest of the panels with cranes. Assemble on the ground a single-truss section of two panels connected by chord bolts. When the two-panel section is completed, attach a sling and lift the section into place by a crane. Insert top panel pins first and bottom ones next.
9 Add the transoms and deck while assembling the rest of the stories.
more triple-triple bays at most). This gives the required bridge length for all but the 210-foot (64 meters) span. Because of staggered assembly, the end bay of the latter bridge must be left double-triple at this point. Decking in 180-foot (54.9 meters) and shorter spans can be continued to the end of the bridge (Figure 8-5).

4 Continue launching bridge until the nearbank rocking rollers are again under the last triple-triple bay of bays added (Figure 8-5).

5 Add five bays of double-single nose to the near-bank end of all bridges (Figure 8-5). Add two more bays to the 210 -foot (64 meters) bridge to get the required bridge length before adding this tail assembly.

6 Launch bridge forward until the three double-triple bays at front of bridge are beyond far-bank rollers. Complete doubletriple bays by converting to triple-triple and adding transoms (Figure 8-5).
7 Pull bridge back to final position, remove double-single tail, and complete assembly in usual manner (Figure 8-5).

Triple-double bridges can be launched using a temporary launching pier. Assemble and launch a normal triple-double bridge. At the same time, assemble a temporary launching pier from panel-bridge parts. The pier can be offset from the center of the gap so the short span is not less than 60 percent of the long span. After the pier is completed, place a platform on top of it to carry jacks. When the triple-double bridge has been jacked down onto the bearings, insert jacks under the bridge at the pier, and jack up the bridge to about horizontal. Then use a truck crane to place the third-story panels and the overhead bracing. Jacking most of the sag out of the bridge makes it possible to place the thirdstory panels. When a fixed pier cannot be used, use a floating pier. The pontons are partly filled with water to float the pier under
(1)
 rdilenz
(2)
 nowe bapond 16 burit pollipit

 and ingrier ppanil io edop at bridgi

 belore adding thin nave lype conctruation

Figure 8.5 Atrexbly and lawnhing of incomplete MT bridye
the bridge, and the water is pumped out to raise the bridge.Information on pier reactions is given in Chapter 16, and on panel crib piers ir Chapter 17.

VERTICAL CLEARANCE

The vertical clearance in triple-story bridges is of prime importance when loaded tank transporters are to pass over them. This is especially true when expedient overhead bracing is used. If greater vertical clearance is needed, underslung stories or deck-type
construction may be used to provide the required bridge class.

USE OF MECHANICAL MEANS

It is normally necessary to launch triple story bridges by mechanical means. Take special care to see that the assembly of the bridge and nose is correct and that the rollers are properly leveled. The launching weight of these bridges is high and slight errors can cause failure.

JACKING DOWN

Normal jacking down methods cannot be used for triple-story bridges. There is not enough room at the end posts to use the required number of jacks. Use either jacks of higher capacity or the methods of jacking down bridges on intermediate piers. Using intermediate pier methods requires room ahead of the bearings for placing the jacks and the timber grillage under the bottom chord to catch the bridge if the jacks slip or fail.

ASSEMBLY OF BRIDGES WITH UNDERSLUNG STORY

METHODS

Triple-story bridges with underslung story are normally assembled and launched by one of the following methods:

- Launched with underslung story, using a temporary launching pier at center of gap. This method is normally used when the launching pier can be positioned.
- Launched as double-story bridge, with underslung story added after bridge is in place. This method is normally used when the launching pier cannot be positioned.
- Launched as double-story bridge, jacked down approximately 6 feet (1.8 meters), with third story added on top chord. This method requires jacking the bridge an excessive distance and generally is not used.

USING TEMPORARY LAUNCHING PIER

This method requires a temporary intermediate launching pier at the center of the gap. It also requires enough room under the near-bank abutment to add one story of underslung panels. The bridge is assembled and launched as follows:

1 Assemble a panel crib pier at the center of the gap strong enough to carry the completed triple-story bridge (Chapter 17). The pier must have at least two bays of panels horizontal (Figure 8-6, page 110). On the pier bay toward the far bank, place rocking rollers at same elevation as nearbank rollers. On the near-bank side of the pier, assemble a bay one panel height below the bay toward the far bank, and place rocking rollers.

2 Assemble double- or triple-truss singlestory bridge using normal launching nose
and assembly methods for abridge length equal to one half the width of the gap (distance from near bank to forward rocking rollers on pier).

3 As soon as the launching nose has landed on the pier rocking rollers on the far-bank side of the pier, add underslung panels, starting with the second bay of bridge.

4 Continue launching the double-or tripletruss single-story bridge and adding the underslung story until the underslung story reaches the pier (Figure 8-6.

5 When the underslung panels land on the pier rocking rollers on the near-bank side of the pier (Figure 8-6), remove the pier rocking rollers under the launching nose. Also remove the top bay of panels on the far-bank side of the pier under the launching nose.

6 Continue launching until bridge lands on far-bank rocking rollers. Remove launching nose and position end posts. Before jacking bridge down onto bearings, remove one complete story from pier and place a working platform on the pier.

7 Jack up center of bridge at intermediate pier until bridge is approximately level. This reduces sag and eliminates difficulty in placing third-story panels.

8 Add third-story panels by using truck crane or truck, or by hand.

9 Remove construction pier. Bridge is now complete.

ASSEMBLY IN PLACE

An underslung story can be added to a double-story bridge in place by using a truck crane. This is the easiest and fastest way. Lower single panels over the side with a truck crane and attach them with chord bolts. Place inner panels first. Use blocks and tackle to position the inner truss panels. Other truss panels can be positioned directly with the crane.

When a truck crane is not available or when it causes too much sag in the bridge, the underslung story can be added as follows:

1 After the double-story has been assembled and launched, position plain rollers outside of and about 10 inches (25.4 centimeters) from the existing outside truss. Place the front roller 3 feet 6 inches (1.07

 gimiar pleing block pand tarifla
meters) from the base plate position and another roller 25 feet (7.62 meters) from the first. Additional rollers 25 feet (7.62 meters) apart can be placed if necessary.

2 Assemble a single-truss girder one half of the total length of the bridge minus one bay (not to exceed 12 bays).

3 Attach one raker per bay to the bottom bracing-frame hole on the inner truss panel chord. Lay rakers flat across the bottom chords of the panels so they project beyond the side of the bridge and over the gap.

4 Place 3-by 6-inch (7.6 by 15.2 centimeters) packing timbers on top chord of bridge in every fourth bay. Hold in place with chord bolts through chord-bolt holes nearest female lugs. Place l-inch (2.54 centimeters) timber packing between grillage and chord. Suspend double-or tripleblock and tackle from each timber, one at
outside end and one between first and second truss.

5 Launch single girder over plain rollers on bank and rakers on bridge until it is in position to be lowered. Attach outer tackle to girder, remove rakers, and then lower girder until top chord is below bottom chord of the bridge. Attach inside tackle below the bottom chord of the bridge to the girder with a sling which passes around the bottom chord of the inner truss of the bridge (Figure 8-7).

6 Remove outer tackle and lift girder into position under lower chord of bridge with inner tackle.

7 Insert chord bolts and tighten to fix girder into position.

8 Remove inner tackle and repeat procedure for the rest of the trusses.

CHAPTER 9

TRAFFIC CONTROL

To ensure that vehicle drivers recognize and follow class and clearance restrictions, and that vehicles come upon the bridge properly, use traffic control measures.

BRIDGE SIGNS

Mark bridges and access roads with standard North Atlantic Treaty Organization (NATO) bridge and vehicle classification signs. These signs state the class, the roadway width, and the overhead clearance of the bridge. Details on the proper posting of NATO bridge signs are found in Field Manual 5-34.

BRIDGE GUIDES

Post traffic guides at each end of long bridges or at one end of short bridges. The guides' duties are to-

- Enforce traffic restrictions and bar unsafe vehicles. The guide determines the proper crossings of critical vehicles and bars all vehicles having vehicle class numbers exceeding the posted bridge class. The guide permits caution and risk crossings only when so authorized and in the presence of higher authority. (This higher authority must have theater or area approval of caution and risk crossings.)
- Keep traffic moving to avoid congestion.
- Arrange for alternative flow of traffic when needed to keep the bridge exit clear.

To avoid congestion, waiting vehicles are directed to park off the road.

- Stop traffic when bridge is damaged.
- Keep vehicles spaced properly and within speed limits specified for the type of crossing authorized.
- Help drivers of wide vehicles by giving instructions and signal guidance across the bridge.
- Maintain markers in a clean and easily recognizable condition. This is particularly necessary for the luminous painted panel verticals and roadway centertine when these are used.

Approach guides are stationed on approach roads or at the intersection of an approach road with the main traffic net. They control the traffic on the approach roads. Normally, units other than the bridge crew provide the approach guides.

The two guides on long bridges should communicate by telephone. The guides at the bridge and the guides on the approach roads should also be able to communicate directly.

BRIDGE MARKING

Luminous tape for distinguishing the bridge during blackout conditions is provided with
the bridge set. The tape is attached to the approach posts and is not visible from the air. These markers help guide drivers to and through the bridge and help to keep traffic moving steadily. They may be arranged on the bridge and at the approaches in different ways, according to the type of approach, length of the bridge, and amount of skylight. Figure 9-1 shows a suggested arrangement of blackout markers on the approach and on the bridge. On the bridge, place tape level with the top of the bottom story.

As a further aid in night driving and particularly as a guide for very wide vehicles, a 4-inch (10.1 centimeters) wide centerline in the roadway should be painted with luminous or white paint. Ribbands, end posts, panel verticals, panel chords, and gusset plates may also be painted with luminous or white paint. These painted markings aid in guiding wide vehicles in the daytime as well as all night traffic (Figure 9-2). Since luminous paint might be seen from the air, use it only when and where the tactical situation permits its use.

ROAD SURFACE

To avoid shocks and possible displacement of the bridge from the impact of vehicles striking its end, build up the road surface to about an inch (2.5 centimeters) above the decking of the ramp.

Fifare 9-1 Aprangranat of truatnoun aarkert an approweh and on bridft

CHAPTER 10

T WO-LANE THROUGH-TYPE BRIDGE

The two-lane through-type panel bridge is used to provide two-way traffic where bridge supports at a demolished bridge are too narrow for two separate bridges (Figure 10-1). This type of bridge is also useful where a narrow launching site necessitates lateral movement of separately launched bridges to position them on their bearings. In this case, it would be easier to build a two-lane bridge.

DESCRIPTION

The bridge consists of two independent outer girders and a common middle girder, assembled from standard panel-bridge parts. The middle girder carries about half the total load and must be about twice as strong as the outer girders. Transoms overlap and occupy alternate transom seatings on the middle girder. Only the types of construction shown in Figures 10-2 to 10-7 (pages 116 and 117) and listed in Table 10-1 are used Table 10-2 gives maximum spans that can be assembled and launched with standard equipment. Longer spans can be launched by using greased timbers or other expedients.

CLASS

The class and maximum spans of two-lane bridges are the same as those of single-lane bridges, with the same truss assembly as the outer girders (Table 10-3, page 118).

LIMITATIONS

Two-lane through-type bridges have the following limitations:

- The maximum span that can be launched by standard launching methods is 160 feet.
- Launching and jacking down are more difficult than for a single-lane bridge.

NUMBER OF PARTS AND SPARES

Formulas for computing the number of parts and spares required to assemble the bridge and nose are given in Table A-8, Appendix A. The percentage of spares used for single-lane bridges is also used for two-lane bridges.

TYFE CA LDENSTRULTINN				
DUTER EIRRLER		WIDDLE GPDER		ABBREVIATION
TRU枵	STORY	TRUSS	STORY	
Suple	Sich	Down	\$ingly	55-0\%
D-Mbly	Slatis	Daumin	foubly	0.080
Iripla	\$ Ha_{4}	Iripla	Death	55.70
Tripla	Sumer	Quranum	Dentile	1\$.40
Drate	Bonkle	9uxample	Dentic	000
Domen	luple	(warbiole	Tuple	OT.
		A 0×5		
Single	fall	Siale	Stale	5S-85
samele	Samer	Treable	tatele	55.05
Drowit		Dutahmele	5 trit	08-05

ASSEMBLY DETAILS

The assembly of two-lane bridges differs from single-lane assembly in several ways. The first of these concerns transom seating in triple-single/triple-double bridges. The spacing of trusses in the girders of this bridge is normal with respect to one lane. With respect to the other lane, however, the two middle-girder trusses nearest that lane are spaced at $81 / 2$ inches (20.8 centimeters) instead of 1 foot 6 inches (44.1 centimeters). Accordingly, transoms from that lane do not fit on seating pintles of the center truss; these pintles must be removed or transoms drilled (Figure 10-8, page 119).

Ramp clearance also differs. To provide clearance between transoms and ramps at the ends of single-single/double-single and double-single/double-double bridges, cut a 3 1/2-by $41 / 2$-inch (86 by 11 centimeters) notch in tran-
soms seated on the end posts and offset the ramp transoms $21 / 4$ inches (5.5 centimeters) from the bridge centerline (Figure 10-9, page 120).

The number of bays and assembly of launching noses is determined as follows:

- For single -single/double-single and double-single/ double-double bridges, noses consist of three single-single trusses. Assemble one completely braced nose of the required length for one lane. For the second lane, add a single truss and connect it to the middle truss by transoms overlapping the transoms of the first lane. Add rakers to the second lane, but omit sway bracing (Figure 10-10, page 121).
- For triple-single/triple-double, triple-

Tabl' $\downarrow \mathrm{d} \cdot \mathrm{z}$ Maximnm fpart and meight por bay of cura-larte penel bridece

single/quadruple-double, and double-double/quadruple-double bridges, noses normally consist of single-single outer girders and two single-single middle girders (Figure 10-11) page 121). However, all girders in the last two nose bays of the 140 -foot (43 meters) double-double/ quadruple-double and the last three nose bays of the 150- (46.2 meters) and 160 -foot (49.2 meters) double-double/quadrupledouble bridges are double-truss assembly. In all cases, place transoms in alternate seatings and brace the nose the same as for normal assembly. Transoms connect the nose girders of the triple-single/tripledouble bridge. However, the nose girders of the triple-single/quadruple-doubleand double-double/quadruple-double bridges cannot be connected because transoms are not long enough except in double-single/quadruple-single nose bays.

Figure do 2 SS. DS turo-dane bridice

Figure I0.3 DK-DO two-lane bridge

Fagare sà TSQD two-kane bridge

	FPAN（TY）	313	40	50	FO	70	80	90	100	114	120	130	147	110	101
$\begin{aligned} & \text { 装 } \\ & \text { 品 } \end{aligned}$	CHI Hept in mote esss	$\begin{gathered} \text { F } \\ \hline \end{gathered}$	3 $\mathbf{\pi}$ 4	21 3 J 1	60 41 10 10	$\left\{\begin{array}{l} x \\ 4 \\ 4 \\ 3 \end{array}\right.$	16 $\begin{gathered} 18 \\ 11 \\ 1 \end{gathered}$								
$\begin{aligned} & \mathrm{B} \\ & \dot{\mathrm{~B}} \\ & \dot{\mathrm{O}} \end{aligned}$	Clas） imaching ef（tomes） Sag fixf 	1 1				$\left\{\begin{array}{l} 4 \\ 4 \\ 3 \\ 4 \end{array}\right.$	54	$\begin{aligned} & \mathbf{4} \\ & \mathbf{4} \\ & \boldsymbol{H P} \\ & \mathbf{N} \end{aligned}$			$\boldsymbol{\omega}$ \star $*$ $*$				
$\begin{aligned} & \text { 은 } \\ & \stackrel{\circ}{\circ} \end{aligned}$	Elass Sall（in） 	11 1						$\begin{aligned} & 69 \\ & 69 \\ & 6 \\ & 19 \\ & 6 \end{aligned}$	$\begin{aligned} & \$ 0 \\ & \mathbf{w} \\ & \mathbf{3 0} \\ & 10 \end{aligned}$	$\begin{gathered} 15 \\ 4 \\ 109 \\ 9 \\ 7 \end{gathered}$	y y y y y y	l 181 41 c	$\begin{gathered} 14 \\ 114 \\ 52 \\ 3 \end{gathered}$		
$\begin{aligned} & \text { C } \\ & \text { 足 } \end{aligned}$	Clact $\$ 3$（II） Byys in mest 55．08	$\stackrel{\square}{\square}$						51 13 31 19	$\left\{\begin{array}{l} w \\ 3 \\ 2 \\ 12 \\ 1 \end{array}\right.$	$\begin{aligned} & n \\ & 4 \\ & 0 \\ & 0 \\ & i \end{aligned}$	（ 41	30 18 4 1	$\begin{gathered} 16 \\ \mathbf{4 1} \\ 1 \end{gathered}$		
$\begin{aligned} & \text { 民 } \\ & \dot{6} \\ & 0 \end{aligned}$	［1031 Latelly wh fathl 5 Sink Bays in indte ss－05 D－85									13 15 113 17 I		$\begin{aligned} & \text { k } \\ & \text { 1s } \\ & 18 \\ & 18 \\ & \$ 1 \end{aligned}$	$\begin{array}{r} \mathbf{3} \\ \mathbf{3 5} \\ 194 \\ \mathbf{1 4} \\ \text { ? } \\ \text { p } \end{array}$	λ ［5］ 41 f	It 112 4 3 5
－	Class	1									i		－	H	14 15
	Chint－ian rimb ncled：lend alap														

Füfure 10.2 Tranmom tenting in T3-Tt2 bredgey

Figufc 70.30 Outrohead niew of typical dampthen man for 59-DN mad (h3-DD bridras

Fiphry soli Onschand thetw of typicai hawhehinf

WORKING PARTIES

AND ASSEMBLY TIME

With the same party organization as for a single－lane bridge，assembly time for a two－ lane bridge is slightly more than twice as long．With a specially organized crew（Table 10－4），assembly time for a two－lane bridge is slightly less than twice the assembly time for a single－lane bridge．Unloading and security details are the same as for a single－lane bridge．

ROLLER LAYOUT

Figures 10－2 to 10－7 show lateral spacing of rocking rollers for various types of bridge assembly．Roller loads for outer girders are the same as for single－lane bridges．However， since roller loads for the middle girder are about double，use enough plain rollers under
this girder to prevent overloading them． These plain rollers must be stagored to provide clearance between them Figure 10－ 12）．Chapter 5 describes the method of using a transom to position bearings for rocking rollers．Rocking rollers are used on the far bank for all bridges except single－single／ double－single，where plain rollers may be used．

ASSEMBLY AND LAUNCHING

Methods of assembling and launching the two－lane bridge are the same for both the single－lane assembly party and the organi－ zation given in Table 10－4．

PARTY	TYPE DF CONST KUC TION									
	ss．0s		DS－00		T5－T0		TS－Rロ		00.00	
	$\mathrm{N} ¢ \mathrm{CO}$	FM	NED	EM	1＋0）	［4］	HCO	CH／	NCO	EM
FA，NEL ©wry fin	2	28 24 +	2	28 28 4	2	48 42 4	2		3	鸳
Trarskeill										
Carity C		16		16		14		15		16
日iv＊－	2	19			\rangle		2	20	7	26
Smer mich		6		6		4		5		5
Anrikelmae		4		4		1		4		14
Chard－1941				2		2		1		4
Tioralde						1		2		
Leechery	2		2		2		2		2	
solnet		12						12		17
		1		1		d		4		－
104	d	Cl	－	4	5	HO	I	174	5	132

Assembling

Assemble a single－single／double－single，and double－single／double－double bridge as follows：

1 Assemble one lane of launching nose with sway bracing in every bay，using launching links if necessary．Place one transom behind forward upright of panel in first bay and one transom on front of rear upright of panel at each joint．Fix rakers at each joint．

2 Add third truss for other lane，using launching links if necessary．

3 Place one transom of panel in first bay and one transom behind upright of panel at each joint．Fix rakers at each joint．

4 Assemble bridge the same as for single－ lane bridge assembly，keeping panels in one lane one bay ahead of panels in the other lane．Attach all bracing frames as for a single－lane bridge．

Assemble a triple－single／triple－double，a triple－ single／quadruple－double，and a double－ double／quadruple－double bridge the same as for single－lane assembly，keeping panels in one lane one bay ahead of panels in other lane．For double－and triple－truss middle girders，attach bracing frames，tie plates， and rakers as in single－lane bridge assembly． When middle girder is quadruple－truss as－ sembly，do not use tie plates between center trusses；use full number of bracing frames and rakers（Figures 10－2 to 10－7）．

 roflers rtagerned wider middtd girler

Assemble a double-triple/quadruple-triple bridge the same as a double-double/quad-ruple-double bridge. However, when using overhead bracing supports in both lanes, make sure female panel lugs in one lane face in opposite direction to female lugs in other lane. This prevents interference between overlapping transoms.

Launching

Table 10-3 gives the launching weight for each type of assembly. The lighter bridges listed in the table can be launched by singlelane launching methods. For heavier bridges, use vehicles with winches to aid in launching. To keep the balance point of bridge and nose behind the near-shore rocking rollers, be careful not to overload rollers. Spans longer than those listed in Table 10-2 can be launched by-

- Skidding the bridge over greased timbers to give more bearing along the lower chord of the girders. The bridge load, however, must not exceed the crushing strength of the timber.
- Launching the bridge in skeleton form so the allowable load on the rollers is not exceeded.
- Using a special rocking distributing beam for mounting two rocking rollers in line under each truss.

Jacking

Jacking of a single-span two-lane bridge is done the same as for a single-lane bridge. For jacking bridges on piers, see Chapter 16. Table 10-5 (page 124) gives maximum lengths of adjacent spans of continuous-span twolane bridges that can be jacked over intermediate piers with jacks arranged as shown in Figures 16-18 and 16-19.

REINFORCED TWO-LANE BRIDGES

Two-lane bridges are reinforced by adding trusses or stones using the same methods as for single-lane bridges. Normally, reinforcement for only one lane is necessary. For capacity greater than class 70, the deck system must be reinforced by using four transoms per bay instead of two and by adding longitudinal wear treads. Table 10-6 (page 125) gives the truss asssembly of reinforced two-lane bridges. Stories can be added to the top of the existing girders or they can be underslung. However, when the middle girder is reinforced to triple-story, the panels must be underslung unless the reinforced outer girder is also triple-story; otherwise, overhead bracing cannot be installed.

Reinforcing one outer girder

 One lane of a two-lane bridge can be reinforced by reinforcing one outer girder. However, the reinforced lane has the capacity of a single-lane bridge of the same assembly as the reinforced outer girder only when the normal lane is closed to traffic.
Reinforcing one outer girder and middle girder

When both the outer and middle girders are reinforced, the reinforced lane has the same capacity as a single-lane bridge of the same assembly, without closing the normal lane to traffic.

CONVERSION OF SINGLE-LANE

 BRIDGES TO TWO-LANE BRIDGESA single-lane bridge can be converted to a two-lane bridge without closing the bridge to traffic for along period. If a two-lane bridge is to be centered on an old bridge centerline, proceed as follows

1 Remove approach ramps on each bank and jack bridge up. Lay transom on three plain rollers on each bank perpendicular to bridge centerline, so raker lugs come directly under space between girders of end bays. Add extra bays to the bridge where insufficient working space on bank is available, before placing transoms.

2 Prepare new bank seats and position grillage. The center grillage must be twice the width of the outer grillage.

3 Jack bridge down on the transoms resting on the rollers, and move bridge sideways to new position.

Note: Launching nose for triple-single/triple-double, triple-single/quad-ruple-double, and the remainder of double-double/quadruple-doublebridges is similar, with extra transom and two bays of double-single/quadruple-single assembly omitted.

4 Position bearings for bridge in its new location. Bearings are placed under original end span or extra span, depending on bank conditions. Jack bridge onto bearings.

5 Place ramps and open single lane of bridge to traffic (Figure 10-13)
6 Position rollers for third girder and launch by single-girder method (Figure 10-13). See Chapter 19 for launching by single girders. The third girder can also be launched by using a truck crane on deck of existing bridge.

EXISTING				
	CUTERGIREER	WHCOLE GIRDER	NOGWal LaNE CLOSED 日OTH LANES OPEN Thtrafelc to trafkic	
55-05			05	5
	Hdd pm 1rest	Add dquble-lnass secome sitary	LS	D5
05-00	didd doplele truss tecond fildy		DD	D5
	didd dowble-truss secoud Me¢\%	Unersing dauble-trots Mhifit figry	D0	do
I¢ TD	Add Inple-1russ seredid stwy		Tir	15
		Underslowit Iriple-tiufichind \$19\%)	Tr	10
15 0	新d dauble-linst ticord qiary		00	60
	Ad dowble-livis stagnd and third sforesi ind owhithad bracing	owertatd bitaz를	DT	01
DD.00	gwillide macinc	hod droble-tuyst lhird thory and overhand brocel	마	DT

 ollet eyrder in secourd falle

7 Connect third girder to rest of bridge with transoms. If available, use a truck crane to place transoms. If a truck crane is not available or if sag is great, add second story to middle girder before connecting third girder with transoms.

8 Add second story to middle girder.
9 Deck second lane.
If the existing bridge is to remain in position, proceed as follows:

1 Jack bridge up and double grillage area under center girder. Jack bridge down. If bridge is to be lengthened, add extra bays and locate bearings and grillage in new position.

2 Proceed as for two-lane bridge.

Note: Single lane is open to traffic during construction.

ASSEMBLY AND LAUNCHING OF TRIPLE-STORY BRIDGES 136

GRILLAGES AND RAMP SUPPORTS 136

The introduction of wider vehicles prompted the development of the extra-widened Bailey bridge M3. The US Army does not stock the M3 Bailey bridge. It is a standard bridge in the United Kingdom. This bridge has a 13foot $113 / 4$-inch (4.3 meters) clear roadway and a clear distance between trusses of 15 feet $81 / 2$ inches (4.8 meters), as shown in Figure 11-1. This added width requires certain new parts that are not contained in the M2 bridge set. The most important of these are a long transom, more stringers, long chess, sway braces, and bracing frames. The bridge normally is assembled for either class 30 or class 80 loads. The maximum spans for each type of assembly at these classes are given in Table 11-1. The weight, in short tons, per typical bay for each type of assembly, class, and span is given in Table 11-2.

Twole is. 2 Wright of typical bay $y_{\text {, }}$ in whort fond, for c.rtrarwidened Raday bridge MS

COMPONENT PARTS

TRANSOM

The transom is a 12 -inch (29.4 centimeters) I-beam, 19 feet 11 inches (6.1 meters) long, tapered at the ends to 10 inches (24.5 centimeters) as shown in Figure 11-2. Two transoms per bay are used for class 30 bridges and four transoms per bay are used for class 80 .

CHESS

The chess are 15 feet (4.6 meters) long, $83 / 4$ inches (21.4 centimeters) wide, and $35 / 8$ inches (8.9 centimeters) deep. Thirteen chess are required for each bay of the bridge except the head bay, which requires 14 . The latter is for class 80 only.

STRINGERS

The plain and button stringers are the same as those used in the M2 bridge, except that the length of the head bay for class 80 bridges requires two long button stringers, M3, and two plain stringers, M3. These stringers are 10 feet $11 \frac{1}{2}$ inches (3.2 meters) long. They are used in the class 80 bridge only and not in the class 30 bridge.

TRANSOM CLAMP

The transom clamp is the same as that used in the M2 bridge except that the width across the top has been reduced slightly to prevent the arm from interfering with the vertical bracing frame used in the bottom story of triple-truss bridges.

RIBBANDS

The ribbands are the same as those in the M2 bridge, except that two long ribbands, M3, are required in the head bay of the class 80

bridge. These are 10 feet $11 \frac{1}{4}$ inches (3.4 meters) long.

END POSTS

The male and female end posts are the same as those used in the M2 bridge except that in tripe-truss bridges the male end posts for the middle truss of both class 30 and class 80 bridges above the transom bracket removed. This permits rakers to be connected between the end posts on the inner trusses and the transom. Use female end posts, M3, only on the middle truss of the end bay of class 80 bridges.

HEADLESS PANEL PIN

Headless panel pins are used on triple-truss assembly to connect the end posts, M3, to the middle trusses. They enable the end posts to be fitted after the launching nose has been removed and allow damaged end posts to be replaced. These panel pins, M3, are similar to those in the M2 bridge except the head is removed (Figure 11-3).

RAKER

A new type of raker, M3, has been developed for use with the extra-widened Bailey bridge,

Ftyure idd fitater, Ms
M3. It is a 3-inch (7.4 centimeters) channel, 3 feet $85 / 16$ inches (1.1 meters) long, as shown in Figure 11-4.

RIBBLT BOLT

A ribband bolt, M3, is used as shown in Figure 11-5.

Figure 1/8 Bracing flowe, ds

BRACING FRAME

The bracing frame, M3, has an additional pair of dowels, as shown in Figure 11-6, to accommodate the bracing bolts connecting it to the middle truss of a triple-truss bridge.

SWAY BRACE

The sway brace, M3, is similar to that in the M2 bridge, but is 18 feet $1 / 8$ inches (5.3 meters) between centers of eyes with the turnbuckle screwed tight.

OVERHEAD SWAYBRACE EXTENSION

The overhead sway-brace extension has an eye at one end and a jaw at the other. It is connected to the sway brace, M3, for use in the overhead bracing of intermediate bays of triple-story bridges.

RAMP PEDESTAL

The ramp pedestal, M3, is used to support the deeper (12 -inch) (29.4 centimeters) portion of the M3 transom. It is similar to the pedestal used in the M2 bridge, but is deeper and has a wider space for the transom (Figure 11-7).

ASSEMBLY AND LAUNCHING OF SINGLE-STORY BRIDGES

METHOD

The method of assembling and launching single-story M3 bridges is the same as that for the M2 bridge except for roller layout, launching nose, triple-truss assembly, and class 80 decking. The number of parts reguired per bay is given in Tables A-9 and A-10, Appendix A, for class 30 and class 80 bridges.

ROLLER LAYOUT

The lateral spacing of rollers is shown in Figure 11-8. The rollers must be staggered for triple-truss assembly. There is no suitable bridge part to use as a distance gage, and the roller templates must be positioned by means of steel tape or improvised gage.

For 30- and 40-foot (9.2 and 12.3 meters) bridges, place a plain roller 15 feet (4.6 meters) from the rocking roller. On longer spans, space plain rollers at 27 feet (8.3 meters) and up, in increments of 25 feet (7.7 meters); consequently, the longitudinal spacing of plain rollers is normally at 27 feet (8.3 meters), 52 feet (23.3 meters), 77 feet (23.7 meters), and so forth.

LAUNCHING NOSE

Information on launching weights and launching nose assemblies for various types of class 30 and class 80 bridges is given in Tables 11-3 and 11-4 (page 134).
Note the following:

- The bridge is launched complete with decking and footwalks, except where shown.

 15' POSIIONS FOR 30"

PIAN ROLCERS LALL POSITIONO FOR TAIPLE TRUEG]

Hinturc if g Roiler inguat

- For the class 80 double- or triple-truss bridge, two rocking rollers are needed under each side, including the far bank for the launching nose.
- Use launching links not more than 40 feet behind the end of the single-single portion of the nose, and not more than 20 feet behind the end of the double-single portion of the nose.
- Due to the greater width of the bridge, set one transom with two rakers in each bay of the nose, and also set sway braces in each bay.

TRIPLE-SINGLE ASSEMBLY

After assembly of the skeleton launching nose, assemble the bridge trusses in echelon, with each outer truss always having one panel more than the adjacent truss. It is not possible to add a third truss to a double-truss bridge.
Assemble the first bay of the bridge as follows:

1 Connect the first two inner-truss panels to the inner trusses of the launching nose, driving the panel pins outward.

2 Place a transom through these panels in front of the center vertical, and connect the long arms of the sway braces to the front ends of the panels.

3 Assemble two panels for the middle trusses, and connect them to the transom clamps.

4 Assemble two panels for the outer trusses, and connect them to the transom clamps.
5 Pass a second transom through all three trusses of the first bay behind the front vertical, and a third transom in front of the rear vertical. Connect the panels to the transom with transom clamps.

6 Connect the short arms of the sway braces to the rear position, and fit bracing frames in the first bay on the top chords.

7 Fit bracing frames in front of the front verticals and behind the rear verticals. The front bracing frames are removed before the end posts are fitted.
8 Tighten transom clamps and sway braces. Place stringers and decking.

Assemble the second bay of the bridge as follows:

1 Place two panels for the outer trusses and connect them with pins driven inward. Drive outward all further pins on all trusses.

2 Place two panels for the outer trusses of the third bay，and connect them with pins driven outward．

3 Place two panels for the middle trusses in the second bay，using headless panel pins．

4 Connect two additional panels in bays four，three，and two，driving the panel pins outward．

5 Fit front end of sway brace in the second bay．

6 Pass a transom through all trusses in the second bay in front of the rear vertical， and another in front of the center vertical． Connect them with transom clamps．
7 Connect the sway braces to the rear positions．

8 Fit the bracing frames on the top chords， and behind the rear verticals of the second bay．

9 Tighten transom clamps and sway braces．
For subsequent bays，the sequence of as－ sembly is similar to that described above． Make sure that each truss in each outer bay has one more panel than the truss in the next inner bay．

For decking，the placing of stringers and chess follows the same sequence as in the M2 bridge，except for the number of stringers in

SAM． （itt	THPE OF consthution	$\begin{aligned} & \text { Burs IIM Mose } \\ & \text { IS D\$ } \end{aligned}$	LIUNCHING TT （tos）	545 （In）	\＄	
30	DS	2	13.5	Ific	1建	
＊	DS	）	185	2	45^{\prime}	
50	DS	3	22.2	d 12	和入］	
50	15	3	50	14．	39\％	
E0	15	4	20）	5	$36^{\prime \prime}{ }^{\prime \prime}$	
30	IS	5	$3)$	4	4＇3＇	
70	$0 \cdot 0$	5	394	54	$41^{\prime} 10^{*}$	
8	［0．	3	44．4	7	46＇3	
96	TD	51	如．	4	$5{ }^{2}$	
100	T0	6 － 1	671	12	55^{5}	
110	T0	－ 1	73.9	14	$658{ }^{\circ}$	
116	㠶	4 2	3.0	12	674＊	
12%	ITr	5 3	63.2	15	$69{ }^{\circ}$	
13＊	TI	5 7	81.4	20	πL^{-}	

all bays，and the number of chess in the head bay．

CLASS 80 DECKING

The triple－single assembly procedure just given is based on class 30 decking．For class 80 decking，the procedure is as follows：

1 Four transoms are required per bay．In both double－and triple－truss bridges，add the extra two transoms behind the center and front verticals．

2 Fit transom clamps alternately on the center vertical．For example，clamp the front transom to the panel in the second
truss，and the rear transom to the panels in the first and third trusses．

3 Continue the stringers to the transoms on the end posts at each end．This makes the head bay of decking an n－foot bay．To do this，lay the first bay of stringers with two button stringers，M3，on the outside，then two plain stringers，M2，inside these，and two plain stringers，M3，inside again，and one plain stringer，M2，in the center．In the last bay use three plain stringers，M3． In all other bays use plain and button stringers，M2．

4 In the first bay use 14 chess and ribbands, M3. Use M2 ribbands and 13 chess in other bays.

END OF BRIDGE

Place the end posts, bearings, and base plates in the same way as the M2 bridge for singleand double-truss bridges. Make the following changes on triple-truss bridges:

- Place base plates as for double-truss bridges. The outer bearing carries the end posts of the second and third trusses on the two seatings each side of the center
seating. The inner bearing carries the end post of the inner truss on its outer seating, as shown in Figure 11-9.
- Fit end posts, M3, to each end of the second truss, using headless panel pins.
- Fit rakers on inner end posts, and tie plates between end posts on second truss. It is not possible in the class 30 bridge to fit rakers at the tail end of the bridge because there is no transom on the end posts.

Figurc il.s Posifion of berurimy and bace piates

ASSEMBLY AND LAUNCHING OF DOUBLE-STORY BRIDGES

METHOD

The method of assembling and launching a double-story M3 bridge is the same as that for the M2 bridge, except for a few differences and the need to assemble the lower story.

ROLLERS

In addition to the pair of plain rollers required on each side of the bridge 50 feet (15.4 meters) behind the launching rollers, a pair is required 75 feet (23.1 meters) behind them. For bridges over 140 feet (43.1 meters), double rollers are required at 125 feet (38.5 meters) behind the launching rollers.

SECOND-STORY,
TRIPLE-TRUSS BRIDGE
For a second-story, triple-truss bridge, the assembly is the same as that for the M2 bridge, but the sequence of adding panels must be the same as in triple-singleassembly. It is not necessary to use headless pins, provided the order of assembly is as follows:

Bay No. 1-Outer panel
Bay No. 2-Outer panel
Bay No. 1-Second panel
Bay No. 3-Outer panel

Bay No. 2-Second panel
Bay No. l-Inner panel
Bay No. 4-Outer panel
Bay No. 3-Second panel
Headless pins must be used on the end posts, M3, where they are connected to the lower chords of the second truss of the second story. Tie plates are not required.

ASSEMBLY AND LAUNCHING OF TRIPLE-STORY BRIDGES

METHOD

The method of assembling and launching a triple-story bridge is the same as that for an M2 bridge, except for several factors. For a triple-triple bridge, the sequence of adding panels in the top story must follow the order given for a second-story, triple-truss bridge except that assembly begins in the second bay. There are no panels in the top story of the first and last bays. Similarly, the sequence
for the lower story of a bridge with underslung bottom story must be the same.

LAUNCHING

For all class 30 bridges, launch the bridge with the top story in place. For the class 80 bridge with a span of 120 feet (36.9 meters), it is possible to taunch the bridge as double story and add the third story afterwards.

OVERHEAD BRACING

The only difference from the assembly of the M2 bridge is that the overhead sway-brace extensions are fitted to the sway braces before they are connected to the overhead-bracing supports, which are reversed so that the sway-brace pinholes are on the outside of the girders.

GRILLAGES AND RAMP SUPPORTS

GRILLAGES

The same grillages as those for the M2 bridge can be used. The maximum base plate reactions are given in Table 11-5 and the maximum launching roller weights in Tables 11-3 and 11-4.

RAMP SUPPORTS

The end transoms of both class 30 and class 80 bridges must be supported at their midpoint. For class 80 bridges, the ramps must be supported as shown in Figure 11-10.

1 PRDVIDE PROPER TYPE OF GRGLAGE AS

 NECESSARY```
5 \mp@code { M 3 ~ P E D E 5 T A L ~ R A M M F }
G RtBBAND Ø\AR@RAIL
7 PICKETS
```

2 EEARING
3 EENIERUNE OF RAMṔ
4 APPROACH MANLP. LENGTH YARIAELE
IN MULTIPLE5 OF IGG*


## TaNik I了－S सfainturn reacilond or

aty ors bace gilate

| SPAn <br> 〈 1 th |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | TrPE OF CONSTEUCTIO | REACIIOM | ITPE ar COHSTRUCIHN | EESCTIOM |
| 30 | \％ | 16.7 | 05 | 31.5 |
| 40 | 5 | 14.5 | 08 | \＄． 1 |
| 50 | ES | 15.5 | TS | 12．7 |
| \＄0 | 08 | 21.4 | T\＄ | 41.5 |
| 10 | 6s | 23.4 | Lb | 4.5 |
| 80 | 08 | 24.7 | ［0 | 46. |
| 96 | TS | 27.2 | T0 | \＄1．1 |
| 150 | T\＄ | 2 E 5 | T0 | 53.7 |
| 118 | TS | 29.7 | timor | 57.6 |
| 120 | DD | 32.3 | $\Pi$ | 64.1 |
| 13 | 如 | 342 | H | 6）${ }^{6}$ |
| 140 | 10 | 104 | $\Pi$ | 11. |
| 150 | 10 | 收戠 | II | 76.4 |
| 150 | \＄1 | 47.2 |  |  |
| 190 | DT | 496 |  |  |
| 100 | DI | 52.1 |  |  |
| 199 | IT | 52.8 |  |  |
| 70 | IT | E5． 3 |  |  |

## CHAPTER 12

## D E C K - T Y P E BRIDGES

Deck-type panel bridges are normally twolane, class 50 or higher bridges assembled to replace single-lane bridges. A deck-type panel bridge has the following advantages over a through-type bridge

- Roadway can be wider for passage of extra-wide vehicles.
- Deck-type assembly allows greater side overhang of vehicles.
- A lighter decking system can be used when the roadway is supported by trusses.
- With some sloping banks, the span between abutments is shorter than in a through-type bridge, because bearings are set 5 feet ( 1.5 meters) below road level.
- Demolished piers need not be built Up to the level of the roadway.
- There are no overhead restrictions.

A deck-type panel bridge has the following disadvantages:

- Excavation at abutments may be necessary because bearings are 5 feet (1.5 meters) below the roadway.
- It is more difficult to launch.
- It must be lowered 5 feet ( 1.5 meters) onto the bearings.
- Waterway clearance is decreased.


## RECOMMENDED BRIDGE DESIGNS

Use the following guidance in designing deck-type bridges:

- Group the trusses into three-truss girders, and space girders evenly under the roadway. The trusses may be single-or doublestory assembly, as shown in Figure 12-1.
- Use bracing frames staggered at opposite ends of each bay (see Figure 12-1) to tie the trusses of each girder together. Every two bays are cross braced by angles welded diagonally across the bottom chords of all trusses. The decking system serves as top lateral bracing.

Make the decking system from standard panel-bridge parts (transom, stringers, and chess) or timber.

- End posts attached to top-story panels may be rested on standard panel-bridge bearings. In multistory assembly, omit the end panels of the lower stories to allow room for the abutment. If end posts are not used, rest the trusses on timber blocking or a rocker bearing under the
joint between the first and second bay from each end. If the spans are broken at the pier, fit the two ends with end posts. If the spans are continuous, use a distributing beam and rocker bearing (see Chapter 16.


## CLASS

The capacity of the standard two-lane decktype panel bridge varies with the span and the number of traffic lanes loaded. The bridges are given two class ratings, one for one-way traffic and the other for two-way traffic. Each of these ratings may be either a single or a dual classification. For maximum spans and classes of standard design twolane deck-type bridges, see Table 12-1 (page 140).

## STANDARD DESIGNS

Standard design deck-type panel bridges are illustrated in Figure 12-1. Material requirements of the standard-design deck-type panel bridge can be found in Table A-11, Appendix A.

## ASSEMBLY

The most practical load distribution is obtained by spacing the trusses uniformly under a relatively stiff deck. Use five three-truss girders ( 15 trusses) under the bridge deck. Space trusses in each girder 1 foot 6 inches ( 44.1 centimeters) apart and tie together with bracing frames.


## Bracing

Use bracing frames as much as possible at panel junctions to space the trusses and to provide lateral stability in each three-truss girder. To brace and tie the five three-truss girders together, weld 3-by 3-inch (7.4 by 7.4 centimeters) angles diagonally across the bottom chords of each two bays. Welding must be done carefully so the properties of the high tensile steel in the panel-bridge parts are not changed. Use mild steel bracing members, and weld them in place before any loads are applied to the bridge.

## Decking

Before the timber decking is laid, weld 3-inch ( 7.4 centimeters) angles transversely to the top chords of the trusses at 5 -foot ( 1.5 meters) centers. These angles tie the trusses together and provide a brace for clamping the ribband bolts.

Laminate the timber decking or lay it in two layers. Laminated decking (Figure 12-2, page 141) is better than layered decking because the nails cannot work out under traffic vibration. This reduces maintenance. Lay timbers on edge perpendicular to the long axis of the bridge and nail together horizontally. For ease of assembly, $21 / 2$-foot ( 73.5 centimeters) sections of laminated deck can be prefabricated before-hand and then two sections laid between each pair of angles. Notch the end timber of each section to fit over the horizontal legs of the angles. Then nail timber wear treads to the deck.



With panel-bridge decking, the gap between the ends of spans can be bridged by expedient timber or steel stringers and chess (Chapter 166.

## EXPEDIENT ASSEMBLY

For ease in launching, group trusses into twoor three-truss girders tied together by bracing
frames. (Space these girders uniformly under the deck.) If other spacings of the trusses are used, expedient braces must be welded to the end verticals of the panels in place of bracing frames. Cross bracing must also be welded across the bottom chords. Examples of expedient assembly are given in Table A-12 Appendix A.


1 WEAR SLIRFACE
2 G' $^{\prime \prime} \cdot 5^{*}$ TLABER CURB
3 CURE BOLTED TO $3^{*}$ ANOLES


f TIMEER DECK LAMINATEUFROM $3^{\prime \prime} \times 6^{2} \times 1$ ' $^{\prime} 0^{\prime \prime}$ TMAER5

## LAUNCHING

Use the following guidelines when launching a deck-type panel bridge:

- Each three-truss girder may be launched separately, or the entire bridge may be launched as a unit by welding added bracing to tie the girders together.
- Launch individual girders of a singlestory bridge by pushing or pulling the girder and launching nose out over the gap, by launching from a high line, by launching with derrick and preventer tackle, or by lifting directly into place with one or two cranes. Over a water gap, girders may be placed on rafts and floated out into the gap and then lifted into place by a crane on a raft. See Chapter 19 for details of these launching methods.
- A single-story bridge may also be launched as a unit by pushing or pulling it on rollers out over the gap.

Use the following guidelines when launching a double-story bridge as a unit

- Tie the girders together by transverse channels welded across the tops of the bottom and intermediate chords.
- The entire unit may be launched with a launching nose and then jacked down onto the bearings.
- If a temporary pier can be built in the middle of the gap to support the cantilevered end, the bridge can be launched as
a single-story platform just below the near-bank seat. This method reduces the jacking height. It is similar to the method for launching triple-story bridges with the unders.ung bottom story described in Chapter 8.


## LOWERING TO BEARINGS

A crane at each end of the bridge can be used to lower the girders to the bearings. Jacks can be used as an expedient, although the 5 -foot (1.5 meters) drop requires several lifts. During jacking, blocking must be used under the trusses to take the load in case the jacks fail.

## EXPEDIENT DESIGN BRIDGES

 Table A-12, Appendix A lists several typical World War II deck-type panel bridges built in the European theater of operations (ETO).


$4 \mathrm{G}^{-} \times \mathrm{B}^{\prime}$ POST
5. DEADMAN

E TIMEER BLCCKINAL DA AOCXEA 6LAPING


 interacdiats pier; timber beat turpporte the decking betwren endia of tpatt

## CHAPTER 13

## RAILWAY BRIDGES

Panel-bridge equipment can be used as an expedient for the assembly of railway bridges. However, use it only in special conditions because there is much deflection. Spans longer than 70 feet ( 21.5 meters) are normally impractical because a quadruple-double truss bridge is required (Table 13-1). Usually, panel-bridge railway bridges are assembled as single-track bridges.
Panel-bridge equipment has the following advantages for use as railway bridging

- Equipment can be transported in trucks to the bridge site. This permits bridge assembly at the same time repairs are being made on the approach tracks.
- Either through- or deck-type bridges can be assembled.

Panel-bridge equipment has the following disadvantages for use as railway bridging:

- Through-type bridges provide restricted clearance.
- Traffic over bridge must be controlled to eliminate excessive vibration and side sway.
- Pin clearance allows more sag than is found in a normal bridge.




## 

Ia 1 ti


- Bridge requires more maintenance than a standard bridge.


## RAILWAY BRIDGE ASSEMBLY

Railway panel bridges are either throughtype or deck-type. Assemble the through-type railway bridge the same as the normal panel bridge, but use ties and rails in place of chess. Girders can be single-, double-, triple-, or quadruple-truss and single- or double-story.

The trusses of double-story bridges infringe US main line and Berne international clearance gages but allow passage at slow speeds Figure 13-1). If decking of double-story trusses is placed in the top story, the trusses do not infringe standard clearance gages.

In the deck-type railway bridge, space the trusses under the ties. The trusses are usually single story. Tie them together laterally by


bracing frames，tie plates，expedient angle cross bracing，and the ties．

## CLASS

The standard designs described will carry standard or modified Cooper＇s E－72 loading． See Figure 13－2（page 146）for diagrams of loadings．Table 13－2 gives the shears and moments caused by these loadings．Table 13－ 1 gives the assembly required for 10 －to 100－ foot（ 3.1 to 30.1 meters）spans using two standard designs．

ASSEMBLY OF
THROUGH－TYPE BRIDGE
Single－，double－，and triple－truss assembly can be used as in normal panel－bridge as－ sembly．A quadruple truss can be assembled by inserting a fourth truss between the inner and second truss of a triple－truss assembly． Use bracing frames and tie plates to tie the four trusses together（Figure 13－3．page 147）． Use transom clamps on all panet verticals except the three verticals in each bay covered by bracing frames．Modify transoms by

Yoblc 13.2 Maximum live－load momentr and five food therr oanted by Couptr＇t E－TZ loarlity

| 5PNM iHI |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | WRD <br> Natives | ıSMGlC | 1F1き0 COMOTIME： |
|  | WHK <br> SHEAR <br> （159） | M WOMtM1 <br> ［tt－10n\＄｜ |  |  <br>  <br> （1） 1 －10nq） |
| 110 | 54 | 101 | 54 | 101 |
| 20 | 90 | 771 | 90 | 371 |
| 30 | 114 | 115 | 114 | 719 |
| 40 | 13 19 | I．LEI | 135 | 1.16 |
| 50 | 157 | 1．6\％ | 157 | 1，6\％ |
| 50 | 176 | 2.15 | $17 \%$ | 2，314 |
| 70 | 194 | 3.077 |  | 2，952 |
| \＄0 | 227 | 3.904 | 114 | 3，685 |
| 38 | 246 | 4，䥽 | 215 | 4．155 |
| 100 | 2 P | 5，004 | 253 | \＄． 3 种 |

cutting a hole in the flange and web at each end to seat the pintle of the fourth truss．Since the fourth truss interferes with the use of rakers，double－story quadruple－truss bridges are usually assembled with the decking in the top story．

Decking system
For railway loads，always use double tran－ soms．Place stringers as in a normal panel bridge．If 8 －by 10 －inch（ 19.6 by 24.5 centi－ meters）by 14 －foot（ 4.3 meters）ties are used， place them directly on the stringers at 2 －inch （4．9 centimeters）spacings and hook－bolted to the button stringers Figure 13－4 page 147）． To use standard ties（byy 8 inches by 8 feet 6 inches）（ 14.7 by 19.6 centimeters by 2.6 meters），lay chess and ribbands in the normal


AXCELOAD (Ib)

(2) MODIFIED GOOPEA'S E. 72 RAILWAY LOADING \{SINGLE LOCOMOTIVE]


[^1]
## End bearings

Use end posts and bearings as in a normal panel bridge. Grillage must be enough to carry the loads given in Table 13-3. Ramp sections must be level with the bridge deck.


Tirble d3V Abutnent reaction, in fonk for varfow由pons of Biailey-type panel railuay brides drumor Cubper's E-72 Ioaring

| 5PAM <br> ( Fl I$)$ | COIPERS E-T1 LOMDIMS |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 5 5Amonid |  |  | H0doried |  |  |
|  | IHDOLKN IPFE 14045 | SECK MP | BHCC | IHIOWEM. | ¢ct.r | [ Hiows |
|  |  |  |  | 1 Pa |  |  |
|  |  | reit | men 1 | Esecar | TWE 1 | Tr\|I |
| 10 | 65 |  |  | 45 |  |  |
| 20 | 10\% |  |  | 109 |  |  |
| 30 | 1朝 | 93 |  | 140 | 130 |  |
| 40 | 167 | 12] | 11) | 167 | 14 | 154 |
| 50 | 197 | 131 | 132 | 297 | 145 | 191. |
| 50 | 225 | 149 | 150 | 225 | 215 | 115 |
| 19 | 234 | 159 | 170 | 250 | 249 | 141 |
| * | $7{ }^{\text {7 }}$ | 1.1 | 192 | 276 | 565 | 265 |
| 41 | 115 | 214 | 213 | 383 | 29\% | 291 |
| 100 |  | , | 243 | 331 |  | 323 |

Fifure $13 \cdot 3$ Threnghtiype pancil raifuny bridere




Figure 13.5 Decking of throwhthpe pawel



ASSEMBLY OF DECK-TYPE BRIDGE Two deck-type assembly designs are described here. Type I is used for spans up to 90 feet ( 27.7 meters), type II is used for spans up to 100 feet ( 30.8 meters). Use the following steps to assemble type I designs:

1 Arrange trusses side by side and connect them by bracing frames and tie plates, as shown in Figure 13-7. Bracing is supplied by the ties, welded sway bracing, and modified transoms. Seat the modified transoms adjacent to the center vertical in the top and bottom chord of every second and third bay. To seat the upper transom, invert every other truss. Cut the modified transoms to the desired length and hole them to seat the pintles on the panels. Weld three-inch ( 7.4 centimeters) angle sway bracing diagonally under the bottom chords of every two bays.

2 Use four 6- by 12-inch (14.7 by 29.4 centimeters) ties in each bay for the deck system. Chord bolt every other tie to the trusses. Drill holes for the chord bolts as shown in Figure 13-8 (page 150). Spike a 6 -by 6 -inch ( 14.7 by 17.4 centimeters) curb to the ties

3 Use end posts at each end of each truss and seat them on standard bearings. Grillage under the bearings at each abutment must be sufficient to support loads given in Table 13-3. Rocker bearings over intermediate piers can be made similar to those described in Chapter 16.



## NOTE. <br> THO Incingouf FuEny <br> THEAp par



Figure 157 Raturuy bridifer Typed-avithanacd

Use the following steps to assemble type II designs:

1 Brace trusses by bracing frames and tie plates into two-, three-, or four-truss girders suitable for launching separately. Group the girders together to form six-, seven-, eight-, nine-, ten-, twelve-, and sixteen-truss bridges as shown in Figure 13-9 (page 150). The two-truss girder is made from two trusses braced at the end verticals by bracing frames. A 3-foot (92.3 centimeters) wide three-truss girder is
made from three trusses braced by bracing frames. A $1 \frac{1}{2}$-foot ( 44.1 centimeters) threetruss girder is made by adding a third truss between the trusses of the two-truss girder and bracing it with tie plates to one of the outer trusses. A four-truss girder is made by adding another truss $81 / 2$ inches ( 21.6 centimeters) outside a $11 / 2$-foot ( 45.7 centimeters) three-truss girder and bracing it with tie plates. Tie the girders together in the bridge by the ties and two modified transoms on the bottom chord of each bay. Modify transoms by cutting
holes in the flange to seat the pintles on the panels. Weld raker lugs to the transom so rakers can be used betweeen the transom and the outside trusses.

2 Use the same deck system as that used in the type I bridge.

3 Use bearings of the same type as those used in the type I bridge.


Finure dix-4 Dretaifr of mefluray tie for cight-trm. bridfec showikf thond-buit holen


EXTRU85


EVGHT TRUSE



EEVENTRUSS


MHE THUPS


Figare 359 Rathuay dridge: Typf $d t$


## BRALING FRAMES

1 ON FFOMT END O+ PANELS IN ENEHY LAY
7 万N EAGE END OF PANELS LN EVEPY 日AY
3 CN EACK EKD OF PAMELS IN OUL MUMAEHLO BAY:
4 CN BACE END OF PAdAELSIN EV[H.
NUMBCRCD EAYS
JIF PLATES
5 OM FAOMI END UF PANELS IN EVERY BAY

## LAUNCHING

Launch a through-type bridge on rollers in the same manner as that for a normal panel bridge.

Use the following guidance when launching a deck-type bridge:

- Type I bridges are designed to be launched complete on rollers. They can be pushed or pulled across by a winch line. Launching noses can be used as shown in Figure 13-10 (page 152). During launching, use extra bracing frames and tie plates on the top chords.
hUTE

 SPACING


- Type II bridges are launched, girder by girder, by cantilevering out on rollers. Add decking and bracing between girders after girders are in place. For other methods of launching single girders, see Chapter 19.


## EXPEDIENTS

Table A-13, Appendix A lists panel railway bridges built in World War II in the European theater of operations (ETO). Figures 13-11 through 13-17 (pages 153 and 154) illustrate expedient bridges. The following expedients are available:

- Welded vertical cross bracing at each panel junction can be used instead of bracing frames and tie plates. Four-inch ( 10.2 centimeters) channels welded across the panel chords can be used in place of transoms.
- If end posts are not used, the abutment bearings can be made from a rigid distributing beam on timber grillage. The beam must support at least two panel-support points Figure 13-11).
- Each truss or two-truss girder can be launched from a highline or lifted directly into place by a crane.







CLUSFEA OF THREE ANILS
 Garry the equiditint of Coopery E-36 toming




Fifure IS li Ens vimw of TD ciane 70 raiknay bridge

figure [3-57 End vitaw of four-rrian dopk radurey bridgc


## REINFORCED BRIDGES

The critical design factor in most fixed-panel bridges is bending moment. This factor varies from a maximum at the center of the span to zero at the supports. Unit assembly of the panel bridge, however, produces girders of uniform section and strength throughout their entire length. Therefore, only center bays of most spans are fully stressed. The greater part of the capacity of end bays is not used. By reinforcing only the center bays where bending moment load is greatest, a more uniform distribution of stress is obtained. Reinforced bridges carry more load for bridge parts used in their assembly than do standard bridges. Short spans of singlesingle, double-single, double-triple, and tripletriple are limited in capacity by shear in end bays. They cannot be strengthened by local reinforcement of center bays and are not included in capacity Tables 14-1 and 14-2 (pages 156 and 157).

## REINFORCEMENT WITH PARTIAL STORY

Double-single, triple-single, double-double, and triple-double bridges, not limited by end shear, can be strengthened by converting the center portion to spans double-double, tripledouble, double-triple, and triple-triple, respectively. The number of bays converted depends on the increase in load class. Added panels must be complete with bracing frames and tie plates; in triple-story assembly, overhead bracing is also necessary.

## Assembly and launching

Partial stories can be added before or after launching. When added before launching, use standard launching nose for complete bridges of the heavier assembly if the length of reinforcement is more than half the "span. If the length of reinforcement is half the span or less, use launching nose for standard bridge of the lighter assembly.

## Class

Table 14-1 gives safe classes of bridges reinforced with partial stories. Length of reinforcement and the class of each is also shown.

## Note the following

- Caution classes are all 25 percent greater than the safe values.
- Check grillage to ensure it will carry increased load.
- Build bridges with a normal rating over class 70 with double transoms.


## REINFORCEMENT WITH

## SUPPLEMENTARY CHORDS

All types of bridges except spans limited by end shear can be reinforced with supplementary chords cut from damaged panels. Pin the supplementary chords together and bolt to existing top and bottom chords with chord bolts. Bracing frames, modified to clear
the chord bolts, must be used Figure 14-1. Overhead bracing supports cannot be used with supplementary chords unless bolts 4 inches ( 10.2 centimeters) longer than standard chord bolts are used. If overhead bracing supports are not used, overhead transoms can be clamped under the top chord or welded on top of the supplementary chords.

## SPECIAL PARTS

Special parts for reinforced bridges are-

- Supplementary chords Figure 14-1, page 158) cut from salvaged panels. These chords must be straight and undamaged. The web channels must be burned off and ground smooth without damaging the chord channels. Both upper and lower chords must always be reinforced. To use lower panel chords as top-chord reinforcement on all types of bridge, transom seats must also be carefully removed and ground smooth. A supplementary chord weighs about 200 pounds ( 90.9 kilos).
- Horizontal bracing frames on double-and triple-truss bridges reinforced with supplementary chords. These frames must be modified to clear the projecting chord bolts (Figure 14-1). Weld a tube, $11 / 2$ inch ( 3.8 centimeters) long and between $23 / 4$ inches ( 7 centimeters) and $31 / 4$ inches ( 9.5 centimeters) in internal diameter, into each longitudinal angle $87 / 16$ inches
(21.5 centimeters) from the bolt holes at one end of the frame. Use an improvised jig to hold the bracing frame during cutting and welding to maintain alignment of the bolt holes. This modification does not prevent normal use of the bracing frame.

Assembly and launching
Supplementary chords cannot be added to the tower chord before launching because projecting chord bolts interfere with rollers. They can be added to upper chords, however, with no change in standard launching noses. Bracing bolts for fastening horizontal bracing frames must be inserted in supplementary chords before the chords are bolted to the truss. When chord bolts are tight, remove nuts from the bracing bolts, and add bracing frames Figure 14-1).

## Class

Table 14-2 gives the maximum safe class of bridges reinforced with supplementary chords and the corresponding length of reinforcement required.

Note the following:

- Caution classes are 25 percent greater than the safe values.
- Check grillage to ensure it will carry increased load.
- Build bridges with a normal rating over class 70 with double transoms.





[^2]

Fegur id. Sisppleptentary churds and nodiffed hrating framese

| DESCRIPTION AND USE | 159 |
| ---: | ---: | ---: |
| COMPONENTS | 167 |
| INSTALLATION AND DISMANTLING | 177 |
| OPERATOR'S AND ORGANIZATIONAL MAINTENANCE | 187 |
| OPERATION UNDER UNUSUAL CONDITIONS | 187 |
| SHIPMENT AND LIMITED STORAGE | 189 |

The cable reinforcement set for panel bridge M2 (Bailey type) increases to class 60 wheel and track the classification of triple-single Bailey bridge for span lengths from 100 feet

## PRINCIPLE OF OPERATION

The cable reinforcement set consists of a system of cables attached to each end of the bridge and offset from under the bridge by posts. The cables are tensioned, causing the bridge to deflect upward. When a vehicle crosses the bridge, the bridge deflects downward, transferring most of the load into the cables.

## USE

To install the cable reinforcement set with a panel bridge use the following procedure:
1 Sling from two to six cables under the bridge Table 15-1). Connect them to ends of the bridge by cable-connection beams.
to 170 feet ( 30.8 to 52.3 meters). For a span of 180 feet ( 55.4 meters) the class is 50 wheel and 60 track. This system significantly reduces

## DESCRIPTION AND USE

The standard Bailey end posts on each truss must be replaced by standard span junction posts in order to install the cableconnection beams Figure 15-1, page 161). Hold cables away from bottom of bridge by two or four, approximately 8-foot (2.5 meters) vertical posts Figure 15-2 page 161). The number and placement of these posts depend on bridge span length Table 15-1).

2 Pretension cables to cable tension given in Table 15-1. The cables are tensioned by the cable-tensioning assembly, consisting of double-action hydraulic cylinders and a hydraulic power unit. Two types of hydraulic power units are used: electric
the assembly time and equipment necessary to cross class 60 traffic over spans of between 100 and 180 feet ( 30.8 and 55.4 meters).
and hand. The electric unit Figure 15-3 page 162) is normally used for installation of the system. Two are needed and require one 10-kilowatt or two 5-kilowatt electric generators.

3 Check cable tension, using a hand-driven hydraulic pump (Figure 15-4, page 163). Read cable tensions directly from a cabletension gage mounted on either hydraulic power unit. Tension cables from near bank only. The near-bank end of the bridge is called the tensioning end. The far end is called the dead end.

Six cables are provided with the set. Each cable is 179 feet 6 inches ( 55.2 meters) long.

Tabte 25.5 Data on whe of eable rainforequent set
On the tensioning end of the cable is a threaded stud. On the dead end of the cable are nine buttons spaced about 10 feet ( 3.1 meters) apart starting 100 ( 30.8 meters) feet from the stud end. This provides a connection of the cable at the dead end, according to the bridge span length.

TRANSPORTATION
The cable reinforcement set is transported in three 5-ton dump trucks. One truck carries the set assemblies and components Figure 15-5), the second carries the cables Figure 15-6), and the third carries the span junction posts Figure 15-7).

## CLASSIFICATION

The classifications in Table 15-2 are obtained with the cable reinforcement set.


Tabie fo-2 Clataifitation of bridgea equipped avith cable meinforcentwist

|  |  | 100 | 179 |
| :---: | :---: | :---: | :---: |
| mental ceastiay | ! | 60 50 | ${ }^{50}$ |
| Caution auming | $\pm$ | 70 70 | 45 |
| Rid crating | $\pm$ | 75 75 | 45 |

nin








## I LA5F｜NIG

2 POST．GON\＃EGTIOM FIXTURES
3 P05TS．AS5EMBL＇Y
4 CABLF RETANFRS．BRIDGE SEAT ROCKERS．
ADAFTERS．日DLT5．NUTS．AND．JACKING LHGS
5 TAANSUERSE 日RACING
6．LOWGITU茯NAL BRANING
7 HAACING．COHNEC，TIUN FLXTURE
B PULL ROOS
9 HAND PLJMP
10 CYLIMDEAS
11 HYDRAJLC PUMFS
12 CABLE－CONHECTION OEAHS





LASHING
2 CABLE.REEL
3 CABLEPEEL SHAFT
4 CABLE.REEL SUP户ゆRT
 E-ton tacticsid durny truch



## COMPONENTS



## DESCRIPTION

The following assemblies and components comprise the cable reinforcement set. Description of these parts includes function and location.

## POST ASSEMBLY

The vertical-post assembly is a fabricated structural steel member suspended directly below a vertical member of the bridge panel. A saddle welded on the lower end of the vertical post provides a seat for the cables, and a cable retainer is bolted to the base to support the cables before they are tensioned. The post assembly is secured to the lower panel chord of the M2 Bailey bridge by the post-connection fixture (Figure 15-8). The post assembly weighs 269 pounds ( 122.3 kilos).

## PANEL LゆWER CHORD <br> 2 HEX NUT <br> 3 CHORD PLATE <br> 4 ChORD BOLT <br> G LOHEITLIOINAL ARACE <br> B HIGN STRENGTH BOLT <br> 7 POST ASSEHBLY <br> 6 POST-GONNECTNDH FIMCTURE <br> 9 BRACE-CONHECTION EIXTURE

 fixturea, and dongludented bracen neburaf to pancil launer thondi or Miz pancl bridne

## POST-CONNECTION FIXTURE

The post-connection fixture (Figure 15-9) connects the postassembly with the bridge panel lower chord (Figure 15-8). Secure this fixture to panel lower chord by four bolts and hex nuts. Use two chord plates on one side of connection fixture to adapt bridge panel for securing fixture. The fixture weighs 178 pounds (80.9 kilos).

## BRACE-CONNECTION FIXTURE

Left-hand and right-hand brace-connection fixtures (Figure 15-10) secure braces, which support the post assembly, to lower chord of bridge panel. Secure one brace-connection fixture to panel lower chord by three bolts and hex nuts. Secure the opposite brace connection by the same hardware plus addition of chord for securing this braceconnection fixture. The fixture weighs 32 pounds (14.5 kilos).

## BRACES

There are two types of post braces, longitudinal and transverse (Figure 15-11). The longitudinal braces are flat steel bars bolted to the brace-connection fixtures and the lower end of the post assembly (Figure 15-8). They are 8 feet $1 / 4$ inch ( 2.5 meters) long, 3 inches ( 7.6 centimeters) wide, $3 / 8$ inch ( 1 centimeter) thick, and weigh 32 pounds ( 14.5 kilos) each. Transverse braces are steel angles which are placed between posts on each side of the bridge Figure 15-12. These braces are bolted to welded plates on each end of the vertical post. For convenience of storage and transportation, each transverse brace consists of two parts: a 7 -foot 4 -inch ( 2.3 meters) brace angle with a welded splice plate on one end, and a


Fighre is 9 Poaf-connetion fluturc


10-foot ( 3.1 meters) brace angle bolted to the splice plate of the shorter bracing. A highstrength bolt and hex nut secure the two transverse braces together where they cross between post assemblies (Figure 15-12). The total weight of one transverse brace is 88 pounds (40 kilos).

## CHORD PLATE

The chord plate (Figure 15-13) is used to adapt the bridge panel lower chord for


Figurf 15 dt Longiturikal and Erantareac bracen
securing the brace-connection fixture and post-connection fixture to the panel lower chord.

## CABLE ASSEMBLY

The cables are $11 / 4$-inch ( 3.2 centimeters) diameter high-strength wire ropes with threaded stud on one end and nine buttons at specific intervals along the cable length. The first button is about 100 feet ( 30.8 meters) from the stud end of the cable and the remaining eight buttons are spaced at approximately 10 -foot ( 3.1 meters) intervals toward the opposite end. Each button is marked with the applicable length of the M2 panel bridge. Screw stud end of cable into a rod-to-cable coupling (Figure 15-14, page 170) and secure by a bolt-type setscrew. The rod-to-cable coupling also has internal threads to retain the pull rod. The cables are 179 feet 6 inches (55.2 meters) long and weigh 595 pounds ( 270.5 kilos). They are wound on wooden


## Figury is.iA Thorwurerac bracea

cable reels for convenience of storage and shipping. The reels weigh 180 pounds (81.8 kilos) each. Six cables come with the reinforcement set.

## CABLE REEL SUPPORTS

The cable reel supports (Figure 15-15, page 171) are steel frames that support a cable reel shaft on which three cable reels are retained.


Fingre IS.13 Chorriplate
Secure cable reel shaft to each cable reel support by a bolt inserted through each end of the pipe shaft and secure bolt by a nut. The cable reel support and cable reel shaft together weigh 287 pounds ( 130.5 kilos). The shaft is 10 feet ( 3.1 meters) long.

## CABLE-CONNECTION BEAM

 Left-hand and right-hand cable-connection beams (Figure 15-16, page 171) are steel frames secured to each corner of the M2 panel bridge for connection and tensioning of cables. Pin these components to bottom of span junction posts which replace end posts of M2 panel bridge. Each cable-connection beam is a frame, with provisions for three cables with buttons or pull rods to pass through it. The cable-connection beam weighs 315 pounds ( 143.2 kilos). These beams serve two purposes:- They serve as a dead-end cable-connection beam. After inserting the cables, with buttons, through the holes provided in the
cable-connection beam, place half-cable retainers (Figure 15-17) between the bearing surface and the button to anchor the cable (Figure 15-18).
- They serve as a tensioning-end cableconnection beam. After connection to the rod-to-cable couplings, feed pull rods through the cable-connection beam and retain them by serrated nuts Figure 1519) page 172).

A double-acting hydraulic cylinder, when installed on each pull rod, bears against the front surface of the cable-connection beam through the use of an adapter (Figure 15-20). Use the double-acting hydraulic cylinders to tension cables Figure 15-21).

```
1 Purl fbD
BOLT
3 BOLT-TYPE SETSCREN'
4 [AELE
5TLID END OF GABLE
6 ROQD.FD.CABLC CDUPMINO
7HEX MUT
```



berared' by bolt and nuti 'choken $1 n$ inget





Figure 15.17 Half-cable rotainera


 anp cht path bufforit


Figure 1S.19 Serrated cablencyfindar nule





## BRIDGE SEAT ROCKERS

Bridge seat rockers (Figure 15-22) are placed between the bridge bearing and the cableconnection beam at the tensioning end only Figure 15-23, page 174). These rockers provide for longitudinal displacement that occurs while heavy traffic is crossing the bridge. Each rocker weighs 15 pounds (6.8 kilos).

## PULL-ROD ASSEMBLY

The pull-rod assembly (Figure 15-24, page 174 ) consists of a $2^{1 / 4}$-inch ( 0.7 centimeters) high-strength threaded rod, a rod-to-cable coupling, and two serrated nuts. The assembly provides for the connection of the cable to the cable-connection beam on the tensioning end and serves as a means to


tension the cables. Thread one end of pull rod into one end of rod-to-cable coupling. Secure pull rod and rod-to-cable coupling by bolt and nut (Figure 15-14). When the cable is tensioned, a serrated nut bears against the bearing surface of the cable-connection beam to take cable-tensioning loads. The second serrated nut retains the double-acting hydraulic cylinder when it is installed on the pull rod. The two serrated nuts are identical. The nut used to retain the cable is called the cable nut and the nut used to retain the double-acting hydraulic cylinder is called the cylinder nut. The pull-rod assembly is 5 feet 10 inches ( 1.8 meters) long and weighs 60 pounds (27.3 kilos).


Fipure ! 5.23 Bridge.scat roekers in place hetlueft atandard berrong pate cablewnametiun bram (renaioning end ontyf

PULL-ROD CHAIN
The pull-rod chain (Figure 15-20) is 12 feet (3.7 meters) long and is screwed into the end of the pull-rod assembly after installation of pull rods in the cable-connection beam. This pull-rod chain helps to advance the cable nut before installation of hydraulic cylinders.

## ADAPTER

An adapter (Figure 15-25) is used during the cable-tensioning procedure to take the cabletensioning load from the hydraulic cylinder until the cable nut is tightened. Use one adapter for each cable. The adapter weighs 20 pounds (9.1 kilos).
 rud'tu-cabtc couphins. torif boit and nrratri, ant Acr:afed nufu

## CABLE-TENSIONING ASSEMBLY

The cable-tensioning assembly is used to tension the cables. It has two basic components: a hydraulic power unit asembly, and double-acting hydraulic cylinders.
The hydraulic power unit assembly consists of a hydraulic power unit gage, hose assemblies, quick-disconnect couplings, and a flow regulator. The hydraulic power unit has a filler/vent plug for adding or removing hydraulic oil, an electric switch for controlling the amount of fluid flow, and a valve for controlling the direction of fluid flow. Two hydraulic power units are required for a


Pagure $5 \mathrm{j} \cdot 2 \mathrm{ji}$ Adapter acainal which doubrsantury hydravicic eytindey betwr taring: fentioning of tha matbeyt


bridge. Each weighs 65 pounds ( 29.5 kilos). They are powered by either one 10-kilowatt generator or two 5-kilowatt generators.

One double-acting hydraulic cylinder Figure 15-21) is required for each cable. A hole through the center of the cylinder allows installation of the cylinder on the pull rod. The power unit is used to expand and retract the cylinders. When the cylinder is pressurized to expand, it advances the pull rod through the cable-connection beam, increasing cable tension. Each cylinder weighs 65 pounds ( 29.5 kilos).

## HYDRAULIC RAM PUMP

The hand-driven hydraulic ram pump Figure (15-4) is included in the kit to provide a means for periodic checking and adjusting of cable tension. It has an end dipstick/plug for checking and adjusting fluid level, a gage adapter, gage, hose assemblies with quickdisconnect couplings, flow regulator, and a control valve to direct fluid flow to and from the cylinders.


Hixilre li. 27 dacking fug in

## BOLTS

Three types of bolts (Figure 15-26) are used to secure major parts of the cable reinforcement set together and to the M2 panel bridge: machine, chord, and high-strength bolts. Machine bolts secure parts in assemblies such as the cable reel shaft. Chord bolts secure fixtures to the panel lower chord. High-strength bolts secure bracings to the post assemblies. High-strength bolts are identified by radial lines embossed on the head.

## JACKING LUG

Jacking lugs (Figure 15-27), when pinned to end holes of the span junction posts, provide a lifting surface for jacking up bridge.

## SPAN JUNCTION POSTS

Male and female span junction posts (Figure 15-28, page 176) from bridge conversion set No. 3, Bailey type, panel crib pier, fixed M2 are used in place of the standard end post. The male post weighs 194 pounds ( 88.2 kilos) and the female post weighs 202 pounds ( 91.8 kilos).

## BOX WRENCH

A special $2^{5} / 8$-inch ( 14.3 centimeters) box wrench (Figure 15-29, page 176) with offset head is used to tighten the chord bolts inserted through chord plates. After the nut is tightened as much as possible by normal means, use this wrench to tighten it another onefourth turn by striking the end of the wrench with a sledgehammer.

 breor-aquamplion filpturep to pincol oforsip


## INSTALLATION AND DISMANTLING

## SERVICE UPON RECEIPT

When new, used, or reconditioned material is first received by the using organization, make sure this material has been properly serviced by the supplying organization, and that it is in proper working condition. Keep records on any missing assemblies or component parts and equipment. Perform the following inspections and services for the cable reinforcement set before any installation procedures:

- Remove any cushioning material or protective covers from packaged cabletensioning assemblies and pull-rod assemblies.
- Perform preventive maintenance checks and services as required, in accordance with Table B-3, Appendix B.
- Inspect cable-tensioning assembly for any leakage or damage which would limit effective operation.


## USE WITH NEW BRIDGE

The cable reinforcement set can be used with both new and existing panel bridges. When used with a new bridge, it should be installed concurrently with assembly of the new bridge.

## Placement of material

Install material before assembly of the bridge as follows:

1 Unload contents of trucks which carry all assemblies and component parts (except the cables and cable reels) and stack them in the vicinity of the end posts in the M2 panel bridge standard layout.

2 Place three cable reels with cables, which are retained on the cable reel supports, on each side of the roadway at rear of bridge erection site. Remove cable reels from bed of truck by using crane or gin poles.

To erect cable reel supports, place three unloaded cable reels side by side; insert cable reel shaft through center hole of cable reels; lift one end of cable reel shaft, close to cable reel; and slide cable reel support on cable reel shaft. Repeat for other end of cable reel shaft.

## Post assembly

Attach post assemblies to the lower panel chords of the bridge according to Table 15-1. To install each vertical post, proceed as follows:
Caution: In order to install a post assembly correctly, the post-connection fixture must be installed directly beneath the vertical member between two panels (from now on referred to as the panel point).

1 When panel point has sufficiently cleared rocking roller, position post-connection fixture directly beneath panel point.

2 Secure post-connection fixture to bridgepanel lower chord using four $13 / 4$-inch ( 4.5 centimeters) diameter chord bolts and hex nuts. Tighten bolts firmly. Place bolts on one end of the post-connection fixture in holes normally used for adding secondor third-story tiers to Bailey bridge. Secure the other end by placing two chord plates
on top of lower chords, using two $13 / 4$-inch (4.5 centimeters) bolts and hex nuts.

3 When a point approximately 4 feet (1.2 meters) behind the panel point has cleared the rocking rollers, install brace-connection fixtures. Position large holes in brace-connection fixtures about 3 feet 9 inches ( 1.2 meters) ahead of and behind panel point. On one side, holes will lineup with holes in lower chord used for multistory construction. Secure brace-connection fixture by placing chord bolts through these holes and tightening hex nuts. On the other side, use two chord plates and bolt through the panel lower chords. Place bolt with nut on top of chord plate. Tighten nut enough to secure brace-connection fixture but to allow for adjustment later.

4 When at least 8 feet ( 2.5 meters) of clearance is available below panel point, install vertical post. Remove cable retainer from vertical post and lower post over side of bridge using 3 -inch ( 1.9 centimeters) hemp rope. Secure vertical post to post-connection fixture, using four $3 / 4$-inch (1.9 centimeters) diameter high-strength bolts and hex nuts.

> WARNING: All personnel who are lowered over the side of the bridge in a boatwain's chair must also wear a safety belt connected to a lashing which, in turn, is secured to the side of the bridge.

5 Secure one longitudinal brace to plate weldment of brace-connection fixture with two $3 / 4$-inch ( 1.9 centimeters) diameter high-strength bolts and hex nuts. Bolt opposite end of longitudinal brace to plate weldment on bottom end of vertical post, using two high-strength bolts and hex nuts Figure 15-8).

6 Secure second longitudinal brace to plate on brace-connection fixture which is secured with chord plates, with two $3 / 4-$ inch ( 1.9 centimeters) diameter highstrength bolts and hex nuts. Attach opposite end of brace to plate weldment on lower end of vertical post using the same hardware. A small adjustment in position of this longitudinal braceconnection fixture may be necessary to complete installation of the second longitudinal brace. Once brace-connection fixture is positioned, tighten chord bolts through chord plates using $25 / 8$-inch ( 6.7 centimeters) box wrench having offset head. Turn nut on bolt threads one-fourth turn, from point where a person can no longer tighten bolt by applying hand pressure to wrench, by striking wrench with sledgehammer (Figure 15-30) to complete installation of longitudinal braces.

7 Connect long transverse brace to short transverse brace, which has a welded splice plate, with four 34 -inch ( 1.9 centimeters) diameter high-strength bolts and hex nuts to form full-length transverse brace. Repeat this procedure to form all


full-length transverse braces. Connect two transverse braces to plates on each end of vertical posts to form X-type bracing. Secure each end of transverse braces to vertical post weldment plates by two $3 / 4$-inch ( 1.9 centimeters) high-strength bolts and hex nuts. Bolt the two transverse braces together where they cross by installing a $3 / 4$-inch ( 1.9 centimeters) diameter high-strength bolt and hex nut
through the hole provided in the braces Figure 15-12).

Caution: This bolt provides a stabilizing function for the transverse braces. Do not forget to install it. Omission of this bolt could result in damage to the equipment.


I CABLE REELS AND CABLE SUPRORTS
Z CABLE PULEO FROMA REEL AND LAGHINGS SECUREO TO CABLE AT 2O' INTERUALS a cable buttons

- 15 ' LASHINF


## 

## Position of cables

The total number of cables used depends on the bridge span; Table 15-1 gives the number needed for various spans. Place the required cables in a preliminary position on the bridge structure before launching the bridge, using the following procedure:

1 Unwind one cable at a time from cable reels, button end first.

2 Loop 16-foot (4.9 meters) length of $3 / 4$-inch (1.9 centimeters) diameter hemp rope to cable at 2 -foot ( 61.1 centimeters) intervals. Make a loop at each end of rope to facili-
tate carrying and lashing of cable (Figure 15-31). Using these ropes to support cable, carry cable onto bridge.

3 When cable button number 180 is at the panel which will be the end panel on far shore, lash cable to panels.

4 Repeat the three steps above for each cable on each side of bridge. If three cables are installed on each side of bridge, lash cable to be installed in inner slot of vertical-post saddle to lower part of bridge panels. Lash cable for center saddle slot to middle of panels and lash outside cable to top part of panels.

Span junction posts
Just before final positioning of the bridge, install female span junction posts on one side of the bridge. Then do as follows:

1 Insert a transom through holes in female span junction posts and push through hole until flange of transom hits side of female span junction posts.

2 Install female span junction posts on the other side.

3 Position the transom properly on studs of the six female span junction posts.

## Bridge bearing plate

 To position the bridge bearing plate, do as follows:1 Position bridge so that centerline of first panel pin, through bottom of span junction post, measures 4 inches ( 10.2 centimeters) to centerline of outer rocking roller.

2 Place the back inside edge of the base plate about 18 inches ( 45.8 centimeters) behind centerline of first panel pin.

3 On tensioning end of bridge, place special bridge seat rocker (Figure 15-22) over each bearing to allow longitudinal displacement of bridge under load.

Note: When bridge is jacked down, bearing shoe on bottom of installed cable-connection beam will mate bearings on baseplate or rockers on bearings.

Jacking up of bridge
Jack up the bridge as follows:
1 Install two jacking lugs Figure 15-27) at each bridge corner, one on end hole of outside span junction post and one on the end hole of inside span junction post, using panel pins (Figure 15-32).

2 Install railroad jacks and jack up end of bridge to ease installation of cableconnection beams.




3 Use normal bridge installation procedure for removal of rocking rollers and templates, and we cribbing under the lower chord for safety in case bridge slips off jacks.

Cable-connection beam
To install cable-connection beam, do as follows:

1 Position cable-connection beams on bridge seat rockers (tensioning end only) or bearings (dead end) under raised span junction posts.

2 Using normal jacking procedure, lower bridge onto cable-connection beams until holes in beam lugs align with lower center holes in span junction posts (Figure 15-33).
3 Secure the cable-connection beams to span junction posts using a set of standard panel pins, and secure panel pins with retainer clips.

4 Complete jacking bridge down onto the bearings (Figure 15-34, page 182) and continue with normal procedure for standard installation of the bridge.

Caution: It is essential that both nearand far-shore abutment cribbings be level transversely with each other in order to eliminate eccentric loading causing bridge elements to be stressed beyond their capacity. It should also be noted that the bridge seat rockers will cause the tensioning end to be higher by the installed height of the rockers.

Installation of cable
After the bridge has been decked, install all cables. Use the following procedure for each cable

1 Remove lashing ropes from side panels of bridge but not from cable.

2 Using the ropes to support the cable, thread button number 180 and the following cable through dead-end cableconnection beam. If only two cables are used, one on each side, thread each cable through center hole of cable-connection beam. If four cables are used, two on each side, no cable is threaded through center hole. Continue threading operation until cable button stamped with number corresponding to span length in feet has passed through cable-connection beam.

3 Place two half-cable retainers between button and cable-connection beam bearing surface (Figure 15-18) to prevent button from being pulled through cableconnection beam during cable tensioning.

4 At tensioning end of the bridge, remove cable and cylinder nuts from pull rod and thread pull rod into rod-to-cable coupling.


1 SPAM JUNCTEON PO5T
2 PANEE PIN
S TABLE.CONHECTIDN 日EAN

4 APIDGE. GEAT AOCKEA dTENSIONING END DNLY)
5 GASE PLATE
6 CRIOGE GEARING

[^3]

1 ROD-TQ. FAELE GOUFUNG
2 CABLE
इ CABLE-CONAEETHON PEAM
4 BAIDGE-SEAT AOCKER TTENSIOWING END ONL'Y
6 日EARING SUFFACE
6 SERRATED CABLE NIT ITHREAD 21" ON
PULL ROD)
3 PULL AOU
y PULL. ROU LHAIN

Fipary 1 i is Cable nut retaining palf rod int cabie-ownecotion bean

Continue turning pull rod until it bottoms in rod-to-cable coupling. Turn pull rod back one-half turn or more to atign hole through pull rod and rod-to-cable coupling. Insert a ${ }^{1} / 2$-inch ( 1.3 centimeters) diameter bolt (inset, Figure 15-14) through the rod-to-cable coupling and pull rod. Install hex nut on end of bolt. Thread coupling onto stud end of cable until it
bottoms. Insert a ${ }^{1} / 2$-inch ( 1.3 centimeters) diameter setscrew.

5 Feed pull rod through proper hole in cable-connection beam and retain with cable nut (Figure 15-35). Then advance cable nut so that pull rod extends beyond cable-connection beam at least 21 inches ( 53.4 centimeters). This may be done by threading the eyebolt on the 12 -foot ( 3.7 meters) pull-rod chain into pull rod and pulling, advancing the cable nut as pull rod advances; by advancing pull rod using hemp rope tied to cable at or near rod-tocable coupling; or by advancing cable nut using chord-bolt wrench.

6 Position cable below vertical posts and remove all rope lashings from cable.

## Caution: The cable must be guided into the correct slot of the verticalpost saddle by bridge personnel while the cables are being tensioned.

7 Repeat the six steps above to install all cables on bridge. After cables are installed on both sides of bridge, secure each cable retainer to vertical-post saddle with four ${ }^{1} / 2$-inch ( 1.3 centimeters) diameter bolts and hex nuts.

## USE WITH EXISTING BRIDGE

The procedures for installing the cable reinforcement set on an existing panel bridge, M 2 , are similar to those for a new bridge. Place the contents of the trucks carrying all
assemblies and component parts on each side of the bridge as close to the area of installation as possible. Next, remove the cable reels from the trucks on the near shore and install on cable reel supports on each side of the roadway, close to the bridge.

## Cable-supporting structures

Install the post-connection fixture, post cable assembly, brace-connection fixtures, and longitudinal and transverse braces like the installation for a new bridge and as follows:

1 Using rope, lower post-connection fixtures over side. Pull up into position using ropes placed through the two openings between the three panels. Note that bearing plate on top of post-connection fixture must be placed under center panel.

2 Remove cable retainer from vertical post by removing four ${ }^{1} / 2$-inch ( 1.3 centimeters) diameter bolts and hex nuts. Install vertical post using a rope over outside of bridge. Attach two ropes to the top of vertical post and pull it into position with ropes through the two openings between the three panels. Note that fixtures on vertical post for transverse braces must be on inside.

3 Attach brace-connection fixtures in a similar manner. Note that bolts on the brace-connection fixture not using the slotted holes in the bridge panel should not be tightened yet, to allow for lateral movement when fitting longitudinal brace.

4 Attach longitudinal and transverse braces, using a boatswain's chair.

WARNING: All personnel who are lowered over the side of the bridge in a boatswain's chair must also wear a safety belt connected to lashings, which, in turn, are secured to the side of the bridge.

## Span junction posts

To install span junction posts and cableconnection beams, jack up end of bridge enough to place cribbing under lower panel chords near end posts to temporarily support bridge. Remove jacks from end of bridge.

Note: Ignore any reference to rocking rollers, since these items have been previously removed from under bridge.

Remove standard end posts from bridge and install span junction posts. Install cableconnection beams.

## Cable assemblies

To install cable assemblies, do the preliminary procedure to prepare cables for installation on the bridge. Carry the cable across the bridge and install button end of cable through cable-connection beam on far shore. Then complete installation of cables as described earlier.

## CABLE TENSIONING

Before tensioning the cables, set up a level reference so the deflection of a point on the bridge at midspan, relative to a point at the
support, can be measured. The purpose of measuring deflections is to provide a check during cable tensioning. Tension all cables simultaneously.

Note: One 10-kilowatt or two 5-kilowatt, 60 -cycle alternating current (ac) generators are required for operation of the hydraulic power unit.

To tension each cable, install an adapter and a double-acting hydraulic cylinder on each pull-rod assembly; connect the hydraulic hose to the cylinders and the hydraulic power unit; and install and tighten cylinder nut on each pull rod to retain adapter and cylinder of cable-tensioning assembly (Figure 15-20).

The hydraulic power unit is operated as follows:

1 Loosen filler plug to vent reservoir.
2 Place control-valve lever in advance position (inset, Figure 15-36).

## 3 Turn switch to RUN position.

4 Turn switch to OFF position when any cylinder has reached full stroke. The JOG position on switch may be used to run power unit in short bursts.

5 Pressure may be slowly released by moving control-valve lever toward center position.

The cable-tension gage Figure 15-36 is located on the hydraulic power unit of the cable-tensioning assembly and the handdriven hydraulic ram pump. The gage is $3^{1} / 2$ inches ( 8.9 centimeters) in diameter and has l-ton (. 9 metric ton) graduations on the dial throughout a 60 -ton ( 54.6 metric tons) scale. Cable tensions for the various bridge spans are given in Table 15-1.
Note: Loads should be read while tensioning cables. Readings during detensioning are inaccurate due to gage lag.
The retract position is used to return cylinders to normal operating position, after cable nuts have been tightened during tensioning procedures.

Operate the hydraulic power unit of the cabletensioning assembly to cause one complete stroke of the cylinder at a time to tension the cables. Cable tensioning is accomplished in increments of cylinder strokes, as follows:
1 As cylinder advances, tighten cable nut by hand against bearing surface of the cable-connection beam. At the end of each cylinder stroke, release pressure, retract cylinder, and hand tighten cylinder nut back to retracted cylinder.

Note: If cable nut cannot be hand tightened because thread on pull rod is damaged or burred, use a Bailey structural wrench, as shown in Figure 15-37 (page 186) to pry

cable nut free of damaged area. Hand tightening of cable nut can then be continued. Cylinder nut can also be turned through damaged or burred threads, using a chord-bolt wrench.

2 Repeat the last two steps until load, as indicated on gage of cable-tensioning assembly Figure 15-38 page 186), is equal to 2 tons ( 1.82 metric tons) more than value listed in Table 15-1. Then slowly release pressure in hydraulic cylinder by slightly opening valve on hydraulic power unit until gage indicates a tension value 4 tons (3.64 metric tons) less than that
listed in Table 15-1. Repressurize to appropriate value in Table 15-1. This must be done with the cylinders near midstroke.

Note: This procedure eliminates friction between the cable and vertical post.

3 Tighten cable nut against bearing surface of cable-connection beam. Release all pressure in cable-tensioning assembly by opening valve on power unit. Then hand tighten cylinder nut against cylinder.

Note: Cylinders must be fully retracted before disconnecting hydraulic power unit.

4 Measure deflection of bridge at midspan, relative to end of bridge. Compare the measured value obtained to values shown in Table 15-1. If the deflection measurement is less than the values listed in Table 15-1, refer to maintenance procedures later in this chapter for troubleshooting tips to correct conditions. As part of regular maintenance, check cable tension using manual hydraulic-pump assembly by pressurizing cylinders just enough to free cable nuts, and comparing gage reading with cable-tension value in Table 15-1.


Figure $15-97$ Urive Batioy threcturai wranelt to


## DISMANTLING OF SET

The sequence for dismantling the cable reinforcement set must be closely followed in order to prevent damage to equipment or possible injury to personnel.

## Cable tension

To relieve cable tension, unload tension on all cables simultaneously, as follows:

1 Move cylinder nuts away from cylinders to $1 / 4$ inch (. 6 centimeter) lees than full cylinder stroke. By pumping, increase load on each cable until cable nut turns freely.
2 Keep cable nut free of cable-connection beam bearing surface while carefully

 cimid friction op thown ar cable-cantion gace
opening valve on the power unit, permitting cylinder to slowly collapse.

3 Tighten cable nut against bearing surface when cylinder is almost completely collapsed. Cylinder should not be completely collapsed because tension in cable prevents hand loosening of cylinder nut.

4 Repeat the three steps above until tension in cables is relieved and cables are free of vertical-post saddles.

5 With cable nut against bearing surface of cable-connection beam, remove cylinder nut, cylinder, and adapter from pull rod.

I DIAL. WDDÇATIMG CAELE-TENSON GHEE OF CABLE. TENSIONING A\$\$FEMBLY AND HANUUAL HYDRAUUC. PUMP ASSEMBLY
2 2B-TON LOAH REDLTAED FDR PROPER CABLE
TENSMONLNG OF 40-FDDT PAMEL BRIDGE M-2
$32-T O N$ CHBLE TENSION OLERLウAD

## Cable removal

 To retrieve the cable, the following procedure for cable removal must be used for all cables installed on the M2 panel bridge1 Reinstall lashing ropes 20 feet ( 6.2 meters) apart, along entire length of the cables. Make certain that cables are fully supported by lashings before continuing with removal operations.

2 Remove cable retainer from each verticalpost saddle by removing bolts and hex nuts.

3 On near-shore tensioning end of the bridge, continue retrieval as follows: unscrew cable nut from pull rod; pull pull rod out of cable-connection rod; remove bolt and hex nut which retain pull rod on rod-to-cable coupling, unthread pull rod from rod-to-cable coupling; and reinstall cable and cylinder nuts on threads of pull rod.

4 On the far shore, pull cable from dead-end cable-connection beam far enough to remove half-cable retainers. Then pull cable back through dead-end cableconnection beam.

5 Lift cable up and over panels of bridge. Carry cable to cable reel. Wind cable on cable reel, removing lashing ropes as cable wraps on reel.

## Caution: During winding of cable on cable reel, be careful to prevent cable buttons from snagging on structure, and cable from wearing against anything which could fray or break the wire.

## Cable-connection beams and span junction posts

To remove cable-connection beams and span junction posts correctly, do as follows:

1 Remove retainer clips from ends of panel pins (Figure 15-33).

2 Place safety cribbing under lower panel chords.

3 Install jacking lugs and railroad jacks, and jack up end of bridge enough to unload panel pins connecting span junction posts to connection beams.

4 Continue jacking up end of bridge until cable-connection beam is clear of span junction posts.

5 Install rocking rollers as when dismantling normal Bailey bridge Chapter 21).

6 Jack bridge down onto rocking rollers.

7 Remove jacks, jack shoes, jacking lugs, span junction posts, and cable-connection beams.

## Posts and bracing

To remove braces, post assemblies, and connection fixtures do the reverse of installation procedures outlined earlier in this chapter. After removing post assemblies from bridge, reinstall cable retainer on verticalpost saddle with four ${ }^{1} / 2$-inch ( 1.3 centimeters) diameter bolts and hex nuts. To complete dismantling, continue removal of the bridge as outlined in Chapter 21.

## OPERATION UNDER UNUSUAL CONDITIONS

## TEMPERATURE EXTREMES

The cable-reinforcement set can be installed and used in all extremes of temperature without a change of existing components. Cable tensions in Table 15-1 are higher than required under normal conditions, to compensate for extremes of temperature.

## SPECIAL ENVIRONMENTS

When operating in dusty, sandy, tropical, or salty areas, do as follows:

- Lubricate cable, bridge set rockers, threaded surfaces, and slots in verticalpost saddles.
- Paint surfaces of parts which are subject to rust and corrosion, in accordance with TM 43-0139, if surfaces indicate absence of paint or excessive weathering. Do not paint cable.


## OPERATOR'S AND ORGANIZATIONAL MAINTENANCE

## BASIC TOOLS

Tools and equipment normally issued to the panel bridge company and those issued with the cable reinforcement set are adequate for maintaining this set. All maintenance will be
performed by the using organization. Basic issue tools and supplies issued with or authorized for the cable reinforcement set are listed in Table B-1, and shown in Figure B-1,

Appendix B. There are no special tools required to perform operator's and organizational maintenance on the cable reinforce ment set.

## LUBRICATION

Lubrication of parts and equipment is an essential part of maintenance. Lubrication procedures are as follows:

- Keep all lubricants in closed containers and store in a clean dry place away from external heat. Allow no dust, dirt, water, or other foreign material of any kind to mix with lubricants. Keep all lubrication equipment clean and ready to use.
- Service lubrication points at proper intervals.
- Keep all external parts not requiring lubrication clean of lubricants.
- Before lubricating equipment, wipe all lubrication points free of dirt and grease.
- Clean all lubrication points after lubricating to prevent accumulation of foreign matter.


## PREVENTIVE MAINTENANCE

To ensure that the cable reinforcement set is ready for operation at all times, inspect it systematically to discover and correct defects before they cause serious damage or failure. Note defects found during operation of the unit and correct them immediately. Stop operation at once if a defect is noted which would damage the equipment were operation continued. Every organization equipped with the cable reinforcement set must train its personnel to effectively maintain it.

Preventive maintenance checks and services are listed and described in Table B-3, Appendix B. The item list indicates the sequence of minimum inspection requirements.

## MAINTENANCE PROCEDURES

 Perform maintenance procedures as follows:- Service the cable-tensioning and manual hydraulic-pump assemblies by checking the level of the hydraulic oil in the reservoir of the pumping unit and filling or draining this component. This includes replacing the gage, quick-disconnect couplings, or hose assemblies when inspection reveals a need for this.

Note: Always use the following standard procedures when disassembling a hydraulic component

1 Make certain all pressure has been relieved before opening any part of a hydraulic component.

2 Provide a container to catch any draining fluid.

3 Cover any exposed openings to prevent foreign matter from entering the hydraulic system.

4 Apply a small amount of pipe dope to all threaded connections to assure a tight connection.

WARNING: Do not permit open flames in immediate area because hydraulic fluid is flammable.

- Service the pumping reservoirs as shown in Figures B-2 and B-3, Appendix B.
- When inspection reveals the need, replace the following parts of the cable-tensioning assembly and manual hydraulic-pump assembly, as illustrated and described in Figures B-4 and B-5. Appendix B, respectively: cable-tension gage; hose assemblies and quick-disconnect couplings; gage adapter (hand pump only); and cylinders (cable-tensioning assembly only).


## TROUBLESHOOTING

Malfunctions which may occur in the cable reinforcement set and its components are listed in Table B-4, Appendix B. Each malfunction is followed by a list of probable causes of the trouble and the corrective action recommended to remedy it. Malfunction may occur while the cable reinforcement set is being used in the field where supplies and repair parts are not available and normal corrective action cannot be done. When this occurs, follow the expedient remedies also listed in Table B-4. Appendix B.

## REPAIR PARTS

Repair parts needed to maintain the cable reinforcement set are listed in Table B-5 Appendix B. A number of these parts are illustrated in Figures B-6 through B-12 Appendix B.

## SHIPMENT AND LIMITED STORAGE

PREPARING FOR SHIPMENT
Prepare the cable reinforcement set for domestic shipment as follows

1 Inspect entire unit for unusual conditions such as damage, rusting, and theft. Do preventive maintenance services outlined earlier in this chapter.

2 Remove all contamination from unit by an approved method. Approved methods of cleaning and drying, types of preservatives, and methods of application are described in TM 38-230-1.

3 Repaint all surfaces where paint has been removed or damaged. DO NOT paint the cables.

4 Complete properly annotated DA Form 2258 (Depreservation Guide for Vehicles and Equipment), concurrently with preservation for each item of mechanical equipment, and outline unusual needs in
blank space on form. Put completed guide in waterproof envelope marked "Depre servation Guide," and fasten it in a conspicuous place. Before using equipment, and before inspection, do depreservation of the item as outlined in the guide.

5 Coat exposed machined surfaces with preservative ( $\mathrm{P}-6$ ), conforming to specification MIL-C-11796, class 3. If preservatives is not available, GGP-GREASE, General Purpose, may be used

## LOADING EQUIPMENT

To load the equipment for shipping, use a lifting device of suitable capacity to lift heavy components. The cable reinforcement set may be transported in three M51 trucks. One truck transports cables, reels, and supports, another transports the span junction post, and the third truck transports the remaining parts of the cable reinforcement set (Figures 15-5, (15-6) and 15-7).

## Caution: Attach a guide rope when lifting the equipment to avoid swinging and damaging the cable reinforcemnent set.

Securely block and lash the cable reinforcement set in M51 trucks. The cabletensioning assembly is contained in its own box with protective wrapping. Also, the pull rods can be stored in cardboard tubes to protect the threads from dirt or other foreign matter. This set may also be stored in a shelter or motor pool. If stored in the open, make sure components are placed on cribbing to reduce rust and corrosion.

## BRIDGES ON PIERS

## BROKEN-SPAN BRIDGES 190

## CONTINUOUS-SPAN BRIDGES 198

## CANTILEVER-SPAN BRIDGES 206

Long simple spans become increasingly uneconomical because of excessive dead weight and reduced class. Generally, intermediate piers should be used to avoid assembly of class 50 continuous spans longer than 150

## DESCRIPTION

Broken-span bridges are multispan structures with the top chord broken and the bottom chord either broken or pinned at the piers. The two adjacent spans act independently under load. One advantage of broken-span over continuous-span assembly is that the reaction on intermediate piers is less. Also, pier settlement will not result in reduced bridge capacity, adjacent spans may be of any length, and seating operations are simplified. Existing piers of demolished structures (Figure $16-1$ ), panel crib piers, framed bents or cribs (Figure 16-2), pile piers, or combinations of these(Figure 16-3, page 192) are used for intermediate supports.

## ASSEMBLY

Independent spans can be single-, double-, or triple-truss and single- or double-story assembly. If truss assembly is changed over the pier when using conversion set No. 3 Chapter
feet ( 46.2 meters) or class 75 continuous spans longer than 120 feet ( 36.9 meters). Bridges supported by piers may be either broken (at each pier) into separate spans or continuous for their entire length. For efficient assembly,

## BROKEN-SPAN BRIDGES

177), the heavier assembly should be continued for two bays into the lighter assembly to stabilize the junction link. For example, if a double-single bridge is joined to a triplesingle or double-double bridge, the triplesingle or double-double should be continued for two bays past the junction into the lighter truss types. Keep transom clamps in these
the time required to assemble one span and prepare it for launching should be as nearly equal as possible to the time required to assemble and place one pier.




taking the end reactions of the spans can be used. Bailey-type panel crib piers for supporting broken-span bridges are described in Chapter 17. It is desirable to make the top of all piers in the same plane as the abutments, but a change in slope between spans may be used if needed. Guy tall, narrow piers to prevent lateral movement.

## Bridge seatings

With panel crib pier parts (conversion set No. 3), take special care that piers are exactly aligned and spaced so that the ends of two adjacent spans are on a common junctionlink bearing. Attach span junction posts to the end of each span, and pin the posts to the junction links fitting in junction-link bearings. Bridge gap between two spans with
junction chess. The use of standard conversion set No. 3 severely limits the bridge pier reaction.

If the panel crib pier parts are unavailable, attach the end posts to the ends of adiacent spars and seat on separate bearings. (Figure 16-4 page 192). Use any of the following three methods to bridge the gap between spans:

- If junction chess are used, seat an extra transom in the end posts of one span and space the bearings $213 / 4$ inches (55.4 centimeters) apart center to center (Figure 16-4).
- If junction chess are unavailable, use seventeen 4 - by 4 -inch ( 10.2 by 10.2
centimeters) timber stringers decked with two chess. ff bearings are butted against each other (Figure 16-5, page 192), the stringers must be 2 feet ( 61.1 centimeters) long.
- Standard stringers cut to desired length can be used to bridge the gap between spans.
- If bearings are spaced 4 feet $6^{7} / 8$ inches (1.4 meters) center to center, bridge the gap by setting standard panel-bridge stringers back 5 feet ( 1.5 meters) along bridge (Figure 16-6, page 192). Use extra panels to support overhanging stringers at one end of bridge.

If end posts are not used, fasten steel plates to pier cap for truss bearings. Pin only the lower chords of spans. Omit top pin at junction so two spans can act independently.

If timber trestle or pile bents are used as intermediate piers, build the top of the bent as shown in Figures 16-7 through 16-11 (page 193). If end posts are not used, reinforce the capsill with a steel bearing plate under each line of trusses. On single bents, use corbels with knee braces to provide a jacking platform for light bridges (Figure 16-8). If double bents are used with end posts and standard bearings, lay timbers across caps to provide a platform for seating bearings (Figures 16-10 and 16-11). Group timbers together under each line of trusses.


Eigure 16.3 Pandel bridese tupported an vorioun tyger of pien



 cap betwreen and of ropaid
 (an

 Da F councon pier

n-slect mennma Punte



Fiefure 15.7 Conrlrantion of pile capl far intarmediate anpports mader panef bridices without end portr or bearingla-sop for हinalle domber or pive bent: fted bearimp piaiter fur seadiry wich ind of truspes

 gepting for hearinfrat adjoceral entis of ipoifpenctent apens-ited pike ond caps

## CLASS

Normal spans, spans without end posts, and piers each have their own class designation, as follows:

- Since spans of a broken-span bridge act independently, each span has the same


Fifure J6-0 Cortetruetion of pile coyo for intarinedinte aspporte ardier pakat briafgen wilionat end ponfl ar bearingr-carbeis and hare bracany added to prowide a soching pialform


Fikwre f6. 1 I Cunpormetion of pile caph to pruwide
 indspondent apare=wood piied or trevile and cap
class when fitted with end posts or span junction posts as a simple-span bridge of the same span length and type of assembly.

- If end posts or span junction posts are not used, the class of spans is limited. For


GIND Of TIMEERA. \#\# 0


Fifure di.y Conatruation of pide sapal for intermodicule aupporta undier paluti bridren without end pooth or bearinplanap for doonde IFudy at vie ben?
classes of Bailey bridges without end posts, see Table 22-3.

- In a series of broken spans, the class of the weakest span is the class of the bridge. For classes of panel crib piers, see Chapter

The load on a pier from two adjacent independently supported spans can be computed. The formula is based on a vehicle spacing of 100 feet ( 30.8 meters). Allowing 15 percent of the live load for impact, and a coefficient of 1.13 for eccentricity, the total factor is 1.3 . The formula is-

| R | $=1.3 \mathrm{P}+{ }^{1} / 2 \mathrm{~W}_{\mathrm{d}}$ |
| :--- | :--- |
| R | $=$ load in tons on pier. |
| P | $=$maximum live-load shear in <br> tons. |
| $\mathrm{W}_{\mathrm{d}}$ | $=$total dead weight in tons of <br> the two spans. |

The following example illustrates how to find the pier reaction of a broken-span bridge:

Given:
Spans of 130 and 80 feet ( 40 and 24.6 meters) on each side of an intermediate pier.

Broken-span panel bridge to span these gaps must carry class 50 load in normal crossing.

## Required:

Determine bridge assembly needed.
Determine load on pier.
Solution:
From Table A-7, Appendix A, the 130 -foot
(40 meters) span will require triple-double
truss assembly and the 80 -foot ( 24.6 meters)
span double-single truss assembly. The triple-double construction must be continued for two bays of the double-single construction to stabilize the junction link.

Using the formula given, P is determined from Figure 16-12 by entering the bottom of the graph at 210 feet ( 64.6 meters) (total of the two spans), reading up to the class 50 curve and then to the left margin. In this instance P is determined to be 74 tons. To determine $W_{d}$, refer to Table 1-2 which shows that one bay of triple-double bridge weighs 5.88 tons and one bay of doublesingle weighs 3.41 tons. The heavier construction must be continued two bays into the lighter construction. This results in 15 bays of triple-double and 6 bays of doublesingle construction. By multiplication we find $W_{\mathrm{d}}$ is 108.66 tons. Load on pier is then-

$$
\begin{aligned}
\mathrm{R} \quad & =1.3 \mathrm{P}+{ }^{1} / 2 \mathrm{~W}_{\mathrm{d}} \\
& =1.3(74)=1 / 2(108.66) \\
& =96.2+54.33 \\
& =150.53 \text { tons }
\end{aligned}
$$

## METHODS OF LAUNCHING

Broken-span bridges are launched by cantilevering the entire bridge with launching nose over the gap as a continuous bridge and breaking it, by launching each span by single girders, or by floating each span into position.

## LAUNCHING AS A

## CONTINUOUS BRIDGE

Normally, an entire single- or double-story bridge with nose is launched over interme-
diate piers and then broken at the piers. Long, heavy single- or double-story bridges can be launched incomplete to make the launching easier. Connect the spans directly or by span junction posts and launching links. Push the bridge across the gap or pull it across by winch line. In general, launch a continuous bridge as follows:

1 Place rocking rollers on each pier and on abutments in the same horizontal plane. Spike or lash rocking-roller bearings, base plates, or templates to piers to prevent shifting during launching. When span junction posts are not used and the bridge is to be cut over the pier, the pier top must be wide enough to allow placing of two rocking rollers end to end under each truss.

Note: The number of rocking rollers on a pier must be equal to the number required on the near shore.

2 Use a launching nose in the same manner as for a normal bridge. The length of the launching nose should be the same as required for a single span bridge of the same length as the longest span in the broken-span bridge. Use launching-nose links in bottom chords of nose to compensate for sag. When estimating sag in nose to determine position of links, allow an extra 6 inches ( 15.3 centimeters) of sag for safety.

3 During launching, guy piers to offset longitudinal thrust of the bridge. When


Figure $50-52$ Standard chane curver
completely launched, pull bridge back slightly to relieve stress in guy lines.

4 Jacking down over intermediate piers requires jacking beams similar to those described later in this chapter.

## SPANS WITH SPAN JUNCTION POSTS

 ON JUNCTION-LINK BEARINGSLaunch spans with span junction posts on junction-link bearings as follows:

1 Fit span junction posts to ends of spans and pin bottom jaws of adjacent posts together. Three methods of making junctions are-

- If spans are all the same length, begin with first junction and fit alternate junctions with launching links between tops of span junction posts. This makes bridge continuous at these points. These junctions are called locked junctions. Do not connect top chords at other junctions.
- If spans are not all the same length, make first length of continuous bridge plus launching nose twice the length of tongest span. This counterweights the nose over the gap.
- In double-story assembly, place span junction posts in each story. Pin the bottom jaws of posts in lower story together and use Mk II launching-nose links to connect top of posts in top story. Do not make a pin connection
between posts at top of lower story and bottom of top story.

2 Remove launching-nose links from top chords at locked junctions by the fotlowing two methods:

- For bridges with several long heavy spans, remove launching-nose links at point of contraflexure. In a continuous girder, there is a point near each support where the girder changes from a downward sag in the gap to an upward bend over the pier. At this point (point of contraflexure), there is no bending moment in girder, no stress in links in top chord, and panel pins are easy to remove. If the pins are heavily greased, they can be pulled by hand. To find point of contraflexure in span, station personnel at each link to test pins for slackness as soon as links are one-third span length from far pier. Push bridge ahead slowly and continue to test pins. When pins are loose, remove links. After removing links, continue launching until bridge is in final position over piers. Then jack down bridge simultaneously at alternate supports.
- For short light bridges of two or three spans, remove launching-nose links over piers. Launch bridge completely before attempting to remove links. After launching, jack up ends of bridge and substitute cribbing at same height as rocking rollers at abutments. Then
remove rollers and cribbing at each center pier and jack bridge down slowly. As jacks at center pier are lowered, tension in top chord decreases. When tension is zero, remove pins in Mk II links. Then jack bridge down on center pier. Repeat this procedure at adjacent piers, working toward abutments. See Table 16-1 for maximum lengths of bridge and jacking arrangements, based on dead weight of two spans over the intermediate pier. When using this table, note the following:
$\square$ For heavier bridges, use jacks at the pier also.
- With jacks arranged as in Figure 1618 (page 205), and two jacks under trusses at each side of bridge, jack strength ( 15 tons) limits this arrangement to a capacity of 56 tons. With four jacks used instead of two under trusses, jack strength limits this arrangement to a capacity of 111 tons.
- With jacks arranged as in Figure 16 19 (page 205), and 6 jacks under trusses at each side of bridge, jack strength limits this arrangement to a capacity of 85 tons (jack strength on toe is 7.5 tons). With 12 jacks used instead of 6 under trusses, jack strength limits this arrangement to a capacity of 168 tons, and two ramps on each side of bridge are needed.
$\square$ Whether $2,4,6$, or 12 jacks are used, truss spacing causes eccentric load on jacking beam.


## SPANS WITH END JUNCTION POSTS ON STANDARD BEARINGS

Launch spans with end posts on standard bearings as follows:
1 Launch as a continuous bridge until far span is in position.

2 Disconnect far span from rest of bridge, and pull bridge back until next span is in position. To remove pins, bridge may be jacked up slightly either at junction or at end.

3 Repeat procedure until all spans are disconnected over their piers.

4 Pin end posts to ends of spans, and jack spans down on bearings.

## LAUNCHING WITHOUT END POSTS

Launch spans without end posts as follows:

- If bottom chords of all spans are to be pinned together and only top chords broken at piers, make junctions, launch bridge, and remove pins in same manner as for spans with span junction posts.
- If both top and bottom chords are to be broken at piers, launch bridge in same manner as for bridge with end posts.




## LAUNCHING BY SINGLE GIRDERS

To launch by single girders, assemble bridge by launching girders of each span from deck of previously completed spans. Add transoms and decking after girders are in place. For detailed procedure, see Chapter 19

## LAUNCHING BY FLOTATION

To launch by flotation, assemble span on rollers on shore, launch onto pontons or crafts, and float into position between piers. For detailed procedure, seq Chapter 18.

## JACKING ON PIERS

Where it is necessary to jack on intermediate piers, the distance through which the bridge is raised or lowered should be kept to the minimum by adjusting the levels of the intermediate rollers. In the case of flat cribs, the jacking problem is considerably eased, since the jacks can be readily positioned under the inner trusses of the bridge. A satisfactory method of jacking the bridge off the intermediate rollers and positioning the distributing beams is as follows:

1 Place jacks beneath panel verticals or diagonals of inner trusses on each side of briage with handles toward the center, and remove sway braces. Lift bridge clear of rocking rollers, and remove rollers and cribbing. Place temporary cribbing under inner trusses, and position base plate with bridge bearing placed centrally.

2 Place distributing beams on bridge bearings under middle and outer trusses. Jack down to within 3 inches ( 7.6 centimeters) of final position. Place cribbing
between bottom chords of bridge and top of distributing beams and lower bridge on the cribbing. Remove jacks from under inner truss.

3 Put distributing beams centrally under inner truss so that crib bearing is over bridge bearing.

## ADVANTAGES

A continuous-span bridge is one in which both upper and lower chords are continuous over intermediate piers between abutments. Advantages of continuous-span bridges are that siting of piers is not limited to 10 -foot increments or to exact longitudinal alignment by panel junction, as in broken-span bridges. Assembly is faster and class is increased for most types of assembly. Classes for continuous spans over piers are found in Table 16-2.

## ASSEMBLY

The number of spans is limited by the effect of harmonious vibration setup by loads and by the difficulty of keeping long bridges in alignment during launching. Normally, con-tinuous-span bridges are limited to four spans or 500 feet ( 153.8 meters).

The maximum span of a continuous-span bridge to carry a specified load is given in Tables 16-2 and 16-3. The short span must be at least 60 percent of the length of the longer adjacent span. If the short span is less than 60 percent, a heavy load on the long span

4 Place jacks beneath distributing beam under inner truss of bridge, jack up, remove packing from middle and outer trusses, and lower onto bearings.

5 Weld guide plates to end stiffeners of distributing beams, with lug on top of plate between middle and inner trusses.

6 Secure bridge bearing in position in base plate with timber.

## MAINTENANCE

Check periodically to record any sinking of piers. Prevent lateral shifting of the bridge by timber blocking on each side of bearings and lateral guy lines on high piers.

CONTINUOUS-SPAN BRIDGES



[^4] Baitey lype shy

| \$ PN\% | $\$ 5$ CLA55 | 0. |  | $\begin{gathered} \text { ELS } \\ \text { colss } \end{gathered}$ |  | 01 |  | TB CLASH |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| (H! | \% | W | 1 | m | 1 | $w$ | 1 | - | I |
| 54.36 | 20 | 71 | 39 |  |  |  |  |  |  |
| 60.40 | 20 | 65 | 65 |  |  |  |  |  |  |
| T $51-40$ | 16 | 5 | 60 |  |  |  |  |  |  |
| 81-50 | 15 | 50 | 55 | . 5 | B |  |  |  |  |
| 90-60 | 12 | 45 | 50 | 75 | 75 |  |  |  |  |
| 100.50 | 17 | 40 | 45 | 55 | 45 |  |  |  |  |
| 110.70 |  | 35 | 40 | 35 | 40 | 45 | 43 |  |  |
| 170.70 |  | 74 |  | 43 | \$0 | \% 0 | 75 | $100{ }^{2}$ | \$0 |
| 130.10 |  | 20 |  | 35 | 40 | 40 | 65 | 15 | 15 |
| 140.30 |  |  |  | 30 | 30 | 50 | 55 | 75 | 10 |
| 150-90 |  |  |  | 24 |  | 40 | 45 | 65 | 76 |
| 150-100 |  |  |  |  |  | 50 | 35 | 55 | 55 |
| 170.110 |  |  |  |  |  | 44 |  | 40 | 45 |
| 10.110 |  |  |  |  |  |  |  | 30 | 35 |
| 150.120 |  |  |  |  |  |  |  | 34 |  |

## 140 <br>  <br> 「 I

raises the end of the short span off its bearing. If spans less than 60 percent are essential, break the bridge at the pier to make the short span independent.

Change of assembly over a pier Avoid changes in truss assembly whenever possible. If changes must be made, change number of stories rather than number of trusses to give better redistribution of stresses between adjacent spans. If one pier is used, the construction of both sides of the pier should be the same. Use Table 16-2 for equallength spans and Table 16-3 for unequallength spans. For both types of span, bridges with a normal rating over class 70 must be built with double transoms.

If two or more piers are used in the assembly of continuous spans (for example, 120 feet [ 36.9 meters], 120 feet, and 70 feet [ 21.5 meters]), the assembly may change over the last bay of the bridge. To determine whether a change is permissible, check Tables 16-2 and 16-3 to see if the lighter construction will give a sufficient class. Extend heavier assembly of longer span beyond intermediate pier a distance equal to 25 percent of shorter span. Make only the following changes of assembly between spans: single-single to double-single, double-single to double-double, triple-single to triple-double, and doubledouble to double-triple. Whenever doubledouble or double-triple truss types are used, they must be reinforced to triple-double and
triple-triple respectively over a pier for two bays on each side of the pier-bridge connection.

## Construction of piers

Use any type of supporting crib or pier capable of taking the reactions of the spans. Piers are normally built before the bridge is launched over them. Where piers are inaccessible from the ground because of extreme height or a rapid stream, a high line can be used in construction or the soldiers and materials can be lowered from the end of the cantilevered launching nose of the bridge. Figure 16-13 (page 200) illustrates how this has been done. On two-span bridges, the bridge may be launched across the gap and pier parts lowered from the bridge. Be sure to check the capacity of the bridge over the combined gap to ensure that it will carry the pier construction crew and materials. Guy tall, narrow piers to prevent lateral movement.

## Construction of bridge seating

Some form of rocker bearing must be used at the intermediate pier to allow for deflection of girders under load. Normally, a rocker bearing for the bridge is placed at the top of the pier. If a rocker is placed at the base of the pier, the bridge can be fastened rigidly to the pier (Chapter 17). Various types of rockers at top of pier are described below. The distributing beam on the rocker bearing must be strong enough to prevent excessive local bending in the bottom panel chord. Table $16-4$ (page 200) gives the number of panelsupport points (points under panel verticals


and junctions of panel diagonals) that must be effectively supported by the distributing beam to prevent excessive bending stress in the bottom chord. The procedures for providing rocker support to panel-support points are as follows:

- When rocker must support two panelsupport points, use a crib capsill, crib bearing, and standard bearing from the panel crib pier set as shown in Figure 16-14 Because of the flexibility of the crib
capsill, this rocker gives full support to only two panel-support points. Pier reaction with this arrangement is limited to 17 tons ( 15.5 metric tons) per truss.
- When rocker must support three panelsupport points, use a crib capsill, an inverted junction-link bearing, and a junction link from the panel crib pier set as shown in Figure 16-15, Pier reaction with this arrangement is limited to 25 tons (22.3 metric tons) per truss.

- 






Furure it is Rocker braring to ampport duto panat-sapport pointo made forith errb rapill, crht bearims. 4ned srandarad bexirng


Figure iti-is Roeker bearing to mapontit ritrete pabri-npponet poinfa made from crib sopaul,


- When rocker must support five panelsupport points, reinforce the crib capsill in Figure 16-14 with an 8 -foot 4 -inch (2.6 meters) section of transom as shown in Figure 16-16 (page 202). Weld capsill, transom, and crib bearing together and pin by chord clamps to panel chord. Weld small channels across bottom of transom sections at each side of bridge to give lateral stability to each rocker. Weld more diaphrams and an end plate to the rocker bearing. The crib capsill may be omitted if a 10-toot (3.1 meters) section of transom is used, but end plates must be recessed to prevent lateral movement of the trusses being supported.


## Anchoring of bridge

Allowance must be made for slight longitudinal movement of the bridge due to deflection under loads, and for expansion and contraction due to temperature changes. With temperature changes of 60 degrees Fahrenheit ( 15.6 degrees Centigrade), a movement of $1 / 2$ inch ( 1.3 centimeters) per 100 feet ( 30.8 meters) of bridge can be expected. To allow for this movement, grease base plates so bearings can move longitudinally on them. Restrain the bearings laterally with timber guides. If sloping bridges are erected, alternate expansion and contraction makes the bridge creep downhill. To offset this, keep slopes under 1 in 30 and fix the uphill end of bridge to prevent creeping. At the end of a bridge with a short end span, lash or clamp end posts to bearings so posts cannot jump their seatings if end of bridge lifts when a heavy load is on the second span.

## Leveling supports

The bottom chord of the bridge must be in the same plane over all the intermediate supports. Normally, this plane is level, but a slight inclination is permissible. If any pier settles more than 6 inches ( 15.3 centimeters) below the bridge plane, then the rockers must be cribbed up. Without the cribbing, the superstructure will fail.

## PIER REACTION

The class of continuous-span bridges varies with span lengths. For shorter spans, it may be less than that of broken-span bridges because shear at the piers is greater. Tables $16-2$ and $16-3$ give the capacities of continuousspan bridges. Note that in most cases, the class is greater than it is for corresponding simple spans. Table 16-4 gives pier reactions and the number of panel points (points under panel verticals and junctions of panel diagonals) that must be supported by the rockerbearing distributing beam to distribute stresses in bridge panels over the pier. The rocker bearing shown in Figure 16-16 has a distributing beam long and stiff enough to support five panel-support points and suitable for any of the spans in the tables.

The following example illustrates how to use this table:

## Given:

Spans of 130 and 80 feet ( 40 and 24.6 meters) respectively on each side of an intermediate pier.

Continuous-span bridge to span these gaps must carry class 50 loads in normal crossing.

## Required:

Determine bridge assembly needed.
Determine type of rocker bearing to use.
Determine load on pier.
Solution:
Table 16-3 shows that double-double truss construction will provide desired class loading.

Table 16-4 shows three panel-support points are required for two equal spans of 130 feet ( 40 meters) using double-double construction. Since the 80 -foot ( 24.6 meters) double-double span is not given, the 100foot ( 30.8 meters) double-double span is used because this is the maximum reaction that can be generated on a double-double truss. The panel-support points required are again three; therefore, truss of the girder must be supported under three panel-support points (use bearing shown in Figure 16-15).

Table 16-4 shows the pier reaction is 194 tons ( 176.5 metric tons) for two equal spans of 130 feet ( 40 meters) using double-double construction. Again, since the 80 -foot ( 24.6 meters) double-double span is not shown, the length is taken as the worst condition, in this case 100 -foot ( 30.8 meters) doubledouble construction. The reaction under



two such spans is given as 226 tons (205.7 metric tons). The average of these two spans is used to determine the pier loading, which in this instance is 210 tons (191.1 metric tons).

Note: One advantage of continuous-span bridges over broken-span bridges is shown by the example problem for finding pier reaction of a broken-span bridge given earlier in this chapter. Span lengths and class requirements are identical; however, in broken-span construction a total of 15 bays of tripte-double and 6 bays of doublesingle construction are required to obtain class $50 / 55$. In continuous-span construction, a total of 21 bays of double-double construction will suffice and provide class $60 / 65$. Assuming panels are a critical item, the continuous-span bridge is more economical since it requires only 168 panels, whereas the broken-span bridge requires 204 panels.
Another example of the use of Table 16-4 is as follows:

## Given:

Spans of 80 and 120 feet (24.6 and 36.9 meters) respectively on each side of an intermediate pier with triple-single truss assembly and class 30 overall.

## Required:

Determine type of rocker bearing.
Determine load on pier.

Solution:
Three panel-support points must be used (Table 16-4). Use bearing shown in Figure 16-16 to support pier load.

Load on pier from two 80-foot (24.6 meters) triple-single bridges is 167 tons ( 152 metric tons) and load on pier from two 120 -foot ( 36.9 meters) triple-single bridges is 127 tons ( 115.6 metric tons). The average of the two is 147 tons ( 133.8 metric tons).

## METHODS OF LAUNCHING

Continuous-span bridges are launched by cantilevering the entire bridge with launching nose over the gap or by floating intermediate spans into position and then pinning.

When launching with launching nose (Figure 16-17), the length of launching nose required is the same as for a simple-span bridge of the same length as the longest span in the continuous-span bridge. Use launching links to compensate for sag. When estimating sag in nose to determine position of links, allow an extra 6 inches ( 15.3 centimeters) of sag for safety. The launching procedures are as follows:

- Use plain rollers as in a single-span bridge. Place rocking rollers at each abutment and on top of each intermediate pier.

Note: The quantity of rocking rollers on top of each intermediate pier is equal to the near-shore requirement.

 onvr iniernhediate ampporta urith bourehinie nope

Place rollers on intermediate piers in the same plane as near- and far-shore rollers, and spike or lash them to piers. Check level and alignment of rollers before starting bridge assembly.

- For long bridges, mechanical power may be needed to launch the bridge. Use methods described in Chapter 7 In addition, or as an alternative, use winch on far shore to pull bridge across gap. Careful alignment of bridge during early stages of launching is important.
- Long, heavy bridges can be launched incompletely to make the launching easier. Add extra trusses and decking needed to complete bridge after it is launched.
- During launching, use guy lines to counteract forward thrust of launching. When bridge is completely launched, pull back slightly to relieve stress in guy lines if necessary.

When launching by flotation, float intermediate spans into position, as described in Chapter 18. Lower and then pin to adjacent spans.

## METHODS OF JACKING

Jack down shore ends of bridges with jacks under end posts, as described in Chapter 6 At intermediate piers, use expedient jacking methods. Jacking load on toe of each jack must not exceed $7^{1} / 2$ tons ( 6.8 metric tons); jacking load on top, 15 tons ( 13.6 metric tons). Also, jacks operated in unison must be of the same manufacture. Figures 16-18 and 16-19 show two methods of jacking at intermediate piers. Table 16-1 gives lengths of adjacent spans of continuous-span bridges that can be jacked with these arrangements. The two methods are as follows:

- Use two jacks, one on each side of trusses, under a section of transom under top chords of lower story (Figure 16-18). A soft metal plate between jack head and transom eliminates danger of jack head slipping. Place transom section close to verticals of panels. Block under jacks to raise transom sections to level of top chord.
- Arrange six jacks under ramp section placed across underside of bottom chords (Figure 16-19).


## SAMPLE PROBLEM <br> Given:

Spans of 80 and 120 feet (24.6 and 36.9 meters) over an intermediate pier with triple-single truss assembly.

## Required:

Determine number of jacks required to jack down bridge.

Solution:
First select method to be used over pier. The method used in Figure 16-18 is the best one because it makes maximum use of mechanical advantage of jack.

Table 16-1 indicates four jacks are required under trusses at each side of bridge.

Total number of jacks required for the pier is $4+4=8$ jacks.

## MAINTENANCE

Pier sinking causes increased stress in the bridge and must be checked immediately by blocking or wedging under bridge bearings. Check ends of short spans for any tendency to lift off bearings. If end posts do lift off bearings, lash posts to bearings or break short end span at pier. Check anchorage to keep bridge from creeping under traffic. Maintain blocking to prevent lateral movement on piers.

 garder, puach ian fioem under tog diturdi vi Jutur phers


1 RAHP
2 RNTCHET JWCK
 under ramp aprtinn עnder tower shord of triseep

## CANTILEVER-SPAN BRIDGES

## USES

It is possible to use cantilever construction to produce clear span lengths greater than those obtained with conventional through-type construction. A clear span of 400 feet (123.1 meters) can be obtained using cantilever construction, but this span requires the use of 20 trusses, which is excessive and which would become too cumbersome. The design data and information contained in this section are based on cantilever construction, as shown in Figure 16-20.

## DESIGN

The following design features are assumed:

- Tables 16-5,16-6 and 16-7 (page 208) are based on a class 60 live load on a single lane, with a 14 -foot ( 4.3 meters) roadway. The dead load is based on a panel weight with bracing of 600 pounds ( 272.7 kilos) and an 8 -inch ( 20.4 centimeters) wooden flooring weighing 400 pounds ( 181.8 kilos) per foot. A single-story truss was assumed capable of resisting 380 foot-tons, a doublestory truss 700 foot-tons, and a triplestory truss 1,310 foot-tons.
- An impact equal to 15 percent of the live load was used.
- The minimum number of trusses in both the simple span and the cantilever span was set at four. If less than four trusses are used, the allowable capacities must be decreased due to excessive concentration of wheel loads on a truss, and the type of floor must be changed.
- The maximum number of trusses was taken at 10 .
- The single-axle load equivalents (SALE) charts for moment and shear have been used for those spans on which wheeled vehicles governed. Appendix C describes in detail the use of SALE charts in determining moment and shear. For spans of 120 feet ( 36.9 meters) and above, the critical vehicle is the 60 -ton ( 54.6 metric tons) tracked vehicle. A spacing of 100 feet ( 30.8 meters) from front to rear of a convoy of tanks moving across the spans gives a center of gravity of the loads at




Fixare 36-20 Condidentr couqifmidnu


114 feet ( 35.1 meters) center to center, and this was the maximum load used.

- A minimum safety factor of 1.15 was used against overturning of the cantilever span (c).

The following tables should be used

- Table 16-5 gives the required number of triple-, double-, and single-story trusses which were used for the simple suspended span (S).
- Table 16-6 gives the various spans which can be built-using cantilever-type construction. The combination shown is the most economical based on the number of panels required for the center-to-center pier spans (L) using the minimum length of anchor arm. It is important to note that there is both a maximum and a minimum length of anchor arm. The minimum length of anchor span (A) provides the necessary counterweight for the cantilever arm, and the bridge is stable if built in this way. However, the positive resisting moment
of the counterweight span is not being used to its full capacity. The maximum span length shown provides for this use but, if this length is exceeded, even with proper loading, the section may fail.
- Table 16-7 gives combinations with the same number of trusses in both the cantilever and the suspended spans. These combinations are not as economical as those in Table 16-6.

The following is a design example:
Step 1: Design of suspended span(S) Figure 16-20).

$$
\begin{aligned}
& \text { Assume } S=190 \mathrm{ft} \\
& \text { SALE }=66.7 \text { tons } \\
& \text { MLL }=\text { PL/4 } \\
& =66.7 \times 190 / 4 \\
& =3,170 \mathrm{ft} \text { tons } \\
& \mathrm{M}_{\mathrm{LL}}+\mathrm{M}_{\mathrm{I}}=3,170 \times 1.15 \\
& \\
& =3,650 \mathrm{ft} \text {-tons }
\end{aligned}
$$

Estimated triple-story trusses $=5$

$$
\begin{aligned}
\mathrm{M}_{\mathrm{DL}} & =[5(.09)+.2] 1902 / 8 \\
& =2,30 \mathrm{ft} \text { tons } \\
\mathrm{M}_{\mathrm{ToO}} & =6,580 \mathrm{ft} \text { tons }
\end{aligned}
$$

Actual number of trusses required= $6,580 / 1,310=5$
Therefore, 5 triple-story trusses will be used.
 （Figurg 18－90），

$$
\begin{aligned}
& \text { Maximum end shear: } \\
& \mathrm{LL}+\mathrm{I}=84+.15(84) \\
& =96.6 \text { tons } \\
& \text { DL shear }^{2}=61.7 \text { tons } \\
& \text { Shear }_{\text {ror }}=96.6+61.7 \\
& =158.3 \text { tons }
\end{aligned}
$$

Step 2：Design of cantilever span（C）Figure 16－20．

Assume single－story construction with 6 trusses
Try 10－ft span：

$$
\text { Resisting moment }=6 \times 380
$$

$$
\begin{aligned}
\mathrm{M}_{\mathrm{DL}} & =[6(.03)+.2] 10^{2} / 20 \\
& =19 \mathrm{ft} \text {-tons }
\end{aligned}
$$

End shear（on hinge）possible：

$$
\begin{aligned}
& \mathrm{P}(10)=2,280-19 \\
& \\
& \begin{aligned}
\mathrm{P} & =2,261 / 10 \\
& =226.1 \text { tons }
\end{aligned} \\
& \hline
\end{aligned}
$$

Therefore，this construction and span length is suitable to carry end shear of suspended span of 118 tons．

Step 3：Design of minimum anchor span（A） （Figure 16－20）．
$\mathrm{W}=6(.03)+.2$
$=.38 \mathrm{ton} / \mathrm{ft}$
$\frac{w \mathrm{~A}^{2}}{2}=2.280$ fletons

| l | 5 | Thus\＄ES in \＄phn z |  | Thusprs lim sphw 1.3 |  | Mn M |  |  | $\begin{gathered} \text { mbn } \\ \text { mulibete of } \\ \text { PANicts } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | WUWBL | TYPE | 4ymbir | TYPE | $¢$ | Mr | П｜${ }^{\text {M }}$ |  |
|  |  |  | （SSORT） |  | ［STORY） |  |  |  |  |
| 100 | H | 4 | 5 | 4 | 5 | 111 | 3 | 助 | 104 |
| 110 | \＄0 | 4 | 5 | 3 | 5 | 10 | 39 | 3 | 13.5 |
| 170 | 100 | b | $\$$ | $t$ | 5 | 10 | 103 | 7 | 164 |
| 130 | 110 | 3 | D | 5 | 5 | 10 | 4 | 31 | 210 |
| 140 | 120 | 3 | 0 | 5 | 5 | 10 | 9 | 3 | 228 |
| 150 | 190 | 5 | 0 | 4 | 5 | 10 | 5 | 31 | 235 |
| 150 | $1{ }^{10}$ | 5 | D | b | \＄ | 10 | 110 | 5 | 2 Ba |
| 170 | 100 | 6 | D | b | 5 | 70 | 110 | 8 | 909 |
| 100 | 100 | 1 | T | 4 | 0 | $\mathbf{2}$ | 130 | 120 | \＄92 |
| 190 | 150 | 4 | T | 4 | 5 | 20 | 130 | 110 | 404 |
| 700 | 160 | － | T | 1 | 0 | 20 | 134 | 110 | 416 |
| 210 | 170 | 5 | $T$ | 4 | 0 | $\mathbf{2 0}$ | 150 | 120 | 538 |
| 2201 | 100 | 5 | $T$ | 5 | 0 | 80 | 150 | 130 | 5 |
| 2010 | 190 | 5 | T | 5 | 0 | \＄0 | 150 | 139 | \＄45 |
| 240 | 700 | 4 | $\dagger$ | 6 | $t$ | 20 | 160 | 110 | 320 |
| 310 | 190 | 3 | 1 | 5 | T | 10 | 210 | 140 | 79 |
| 780 | $1{ }^{0}$ | b | T | 5 | T | 40 | 230 | 150 | 1，004 |
| 2 O | 150 | 6 | T | 5 | 1 | 4 | 230 | 150 | 1，025 |
| 100 | 200 | 6 | T | 古 | T | － | 230 | 160 | 1.000 |
| 240 | 210 | 7 | T | 7 | T | 明 | 240 | 160 | 1.211 |
| $\mathbf{2 0 0 6}$ | 220 | 1 | $\dagger$ | 1 | $\dagger$ | 40 | 250 | 169 | 1．4W |
| 111 | 230 | 1 | T | 9 | T | ＋ | 250 | 160 | 1.701 |
| 120 | 240 | 10 | $T$ | 10 | T | 軥 | 270 | 160 | 1．820 |

（ $\mathrm{R}_{1}$ assumed $=0$ ）

$$
\begin{aligned}
\mathrm{A} & =2,280 \times 2 / .38 \\
& =12,000 \\
\mathrm{~A} & =109.5 \mathrm{ft}(\text { try } 100 \mathrm{ft})
\end{aligned}
$$

Overturning moment about R2

$$
\begin{aligned}
& =\frac{\mathbf{w} \mathbf{C}^{2}}{\mathbf{2}}+\mathbf{P C} \\
& =19+158.3(10) \\
& =1,602 \mathrm{ft} \text {-tons }
\end{aligned}
$$

Resisting moment about $\mathrm{R}_{2}$

$$
\begin{aligned}
& =\frac{w \mathbf{A}^{2}}{2} \\
& =\frac{.38(100)^{2}}{2} \\
& =1,900 \mathrm{ft}-\mathrm{tons}
\end{aligned}
$$

Safety factor $=1,900 / 1,602$

$$
=1.18
$$

（within 1.15 assumed allowable）
Therefore，minimum $\mathrm{A}=100 \mathrm{ft}(30.48 \mathrm{~m})$


## Firure l6-2I Lopdi and remetincu

Step 4: Design of maximum anchor span (A) Therefore, the total maximum length of (Figure 16-21).

## Maximum resisting positive moment $=2,280 \mathrm{ft}$-tons

Assume span $=110 \mathrm{ft}$

$$
\begin{aligned}
& \mathrm{SALE}^{+}+\mathrm{SALE}_{1} \\
&=58 \times 1.15 \\
&=66.7 \text { tons } \\
& \mathrm{R}_{1}=66.7(55)-(61.7 \times 10)+
\end{aligned}
$$

## $(58 \times 190 \times 55)-(28 \times 10 \times 6)$

$$
=48.4 \text { tons }
$$

## Moment at center <br> $=(48.4 \times 55)-\left[.38 \times \frac{\left(55^{2}\right)}{2}\right.$ <br> $=2,087 \mathrm{ft}$-tons

Therefore, maximum $\mathrm{A}=110 \mathrm{ft}(33.53 \mathrm{~m})$
bridge for this combination is:

$$
\begin{aligned}
\mathrm{S}+2(\mathrm{C})+2(\mathrm{~A}) & =190+20+220 \\
& =430 \mathrm{ft}(131.06 \mathrm{~m})
\end{aligned}
$$

The pier-to-pier span length:

$$
\begin{aligned}
\mathrm{L} & =\mathrm{S}+2(\mathrm{C}) \\
& =190+20 \\
& =210 \mathrm{ft} \\
& (64.01 \mathrm{~m}) \text { (Table 16-7) }
\end{aligned}
$$

Note: Although six single-story trusses would be able to carry more than the maximum end shear of 158.3 tons (144.1 metric tons) on a cantilevered 10 -foot span, an examination of steps 3 and 4 shows they are needed for even the minimum length of anchor span required.

## CHAPTER 17

## PANEL CRIB PIERS AND TOWERS

Panel crib piers are made of trusses with panels set horizontally or vertically and are normally braced with transoms, sway bracing, rakers, bracing frames, and tie plates in a panel bridge.

Panel crib piers assembled from parts of the Bailey bridge set can be used as-

- Intermediate supports for through- and deck-type fixed bridges. The piers can be set on timber grillage, piles (Figure 17-1), masonry footings (Figure 17-2), or partially demolished piers.
- Piers in barge bridges.
- Intermediate landing-bay piers in floating panel bridges with double landing bays.
- Expedient towers for suspension bridges, lift bridges, gantries, and floating-bridge anchor-cable systems.
- Expedient marine piers.

CHARACTERISTICS OF CRIBS
Types of panel crib piers have their own distinguishing characteristics. Panel crib piers are described by the number of trusses (single, double, triple, and so on, as in a panel bridge); the number of stories (number of panels along the vertical axis in one bay, as in the panel bridge); the number of bays (number of panels along the horizontal axis
in a given story); and the position of panels in each story (horizontal or vertical) Table 17-1 (page 212) lists the abbreviations used to describe typical panel crib piers. Panel cribs have from one to four trusses on each side, depending on the desired capacity. There must always be at least as many trusses in the crib as in the bridge it supports.

Panels in a panel crib pier are horizontal (Figure 17-3, page 212) or vertical (Figure 17. 4) page 213). Horizontal panels provide a 5 -
foot 1-inch (. 16 meter) increment in pier height. They are, however, weak laterally and are used one above the other when expedient bracing is added. When ultimate capacity piers are used, any horizontal stories are weaker than vertical ones. Vertical panels provide 10 -foot ( 3.1 meters) increments in pier height. They can be used one above the other in piers up to 70 feet ( 21.5 meters) high supporting continuous spans and up to 110 feet ( 33.8 meters) supporting broken spans. In high piers, exceeding three vertical stories,




## Figure 17.2 Continuounpanel bridye with panet crib piers on cowtrete foctinge

the pier base must be doubled for at least half its height or the lower story must be imbedded in concrete for $3 / 4$ of its height.

To assemble 15 -, 25 -, 35 -, 45 -, 55 -, and 65 -foot ( $4.6,9.1,10.8,13.8,16.9$, and 20 meters) piers, vertical stories are used with only one 5 -foot ( 1.5 meters) horizontal story placed at the top of the crib.

## TYPES OF BRIDGE SEATING

Seating for a continuous bridge is different than that for a broken-span bridge. Con-tinuous-bridge seating includes the following features:

- Deflection of a span under load tends to change the slope of the bridge at the piers. To prevent large stresses in the bridge and pier, allow some rocking movement at intermediate supports of continuous bridges.

A rocker at top of the crib can be built of crib bearings on standard bearings, inverted junction-link bearings on junction links, or one or two I-beams at right angles to the bridge axis. With this type of bridge seating, bottom chords of the bridge over the seating are normally reinforced by a steel beam to distribute the load and prevent failure of the panel chords due to local bending. These rockers
are described and illustrated in Chapter

- If the crib is fastened rigidly to the bridge, it must rock with the bridge as the girders deflect under load. A rocker at the base of the crib can be built of crib bearings on standard bearings or inverted junctionlink bearings on junction links. This type of pier construction may prove useful on piers less than 10 feet ( 3.1 meters) wide along the axis of the bridge. It must be built from the bridge downward and the bridge must be capable of holding itself, the pier, and the work crews while resting on rollers for both span lengths until the pier is in position. Heavy bearing plates are needed beneath the crib-bearing so that the entire bridge-pier reaction may be distributed to the pier base.
- As an expedient when rocker bearings cannot be improvised, seat bridge on timber on top of the piers.

Broken-span bridge seating includes the following features:

- In broken-span assembly, the adjacent ends of the two spans are seated on the junction-link bearings by use of span junction posts and junction links (Figure 17-5 page 214).
- As an expedient, the adjacent ends of the two spans can be pinned to the vertical panels in the pier, or the two ends can rest on separate bearings.


| PYPE GF PIER |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| W\＃latik | Mulatin |  |  | Mumberdi bays | HEL POSITANS |  |  |  |
| OF TRUS建S | Of STOPIF | JST STARI | 2mbsIoht | 3RD STORT | \＄1\％§TJRY |  | G14 STARY |  |
| 5 mpl | ${ }_{5}^{2} \times 1 / 8$ | Un－motantal |  | 1 |  |  |  | 犃（14） |
| Doublt | 5－12｜t | Ome－riplical |  |  |  |  |  | OS IJN |
| Dowbly | \＄miplt | Th4－rinilth |  |  |  |  |  | $0 \leq 12 \mathrm{~N} \mid$ |
| 1 H | tagl | Twa－1witial |  |  |  |  |  | TS (24) |
| Qradmup | Olouble | Dat－h＊itonlal |  |  |  |  |  | $\mathrm{DO}(1 \mathrm{H} \cdot \mathrm{IY}$ |
| Opubin | Onable |  ｜wa．yerical | Ditevorical |  |  |  |  | $0 \mathrm{D} \text { (IY-1 }$ |
| Onubly | Doril | lup．yprical | Som－herabotal |  |  |  |  | 加（24－1H） |
| Donct | Doben | Trgryentical | 19nt－1tifecm |  |  |  |  | 加（2\％－נ才 |
| Deatime | Comen | Tma－wertical | 190－witica |  |  |  |  |  |
| linple | Triplt | Tma－vertical | Iug．verimicis | Tra－yralical |  |  |  | 昭（37．74） |
| Doubly | Vuadruple | Four－4erlucal | F9w－waticil | T＊s－wertical |  |  |  | \％（1ヶ－7v－2\％） |
| Ifiplt | Frir | Four－wirlacil | Four wertacil | Two－wrtital | 1mp－naticit | Tra－n＊＊icab |  |  |
| Italt | 54 | Tmb－raliced | Tre－vertical | The－wrlical | 1muntical | Iwd－Itatital | Tray wime |  |


| 3 CAFSILL |
| :--- |
| 2 RAKER |
| 3 PANEL |
| 4 SWAY BRACE |
| STRAMSOM |



1 FEWhis SHANJUNCTION POST
2 JUNCTION LINK
3 JUWCTION－LUNK EEARIMG
4 CRIS BEARIMG
5 CHORD CLAMP
B 亡月感 ¢APGIい
7 MALE SPAN JUNCT THN POST
B L LUUCHNG ETE MK II
dAEMOVEO AFTER LAUNCHNGT



| \#1! | WEIGHT \|ab| |
| :---: | :---: |
| Femate spar junctus post | 202 |
| male Lpayjumation posh | 194 |
| Hepron chess | 149 |
| Jumetian Imb | b |
| Junctian-liak bieding | [11 |
| Chad inmp | 11 |
| Cinb capalil | 251 |
| Culb bex ${ }^{\text {ang }}$ | 37 |

## SPECIAL PARTS FOR PANEL CRIB PIERS

The bridge conversion set No. 3, Bailey type, panel crib pier, contains parts that are used with equipment from the basic bridge set to build panel crib piers. The major items in the conversion set are listed in Table 17-2.

## SPAN JUNCTION POSTS

Span junction posts are special end posts for connecting adjacent ends of two spans and supporting them on the same bearing.

There are two types of span junction posts, male and female, which have lugs that are pinned to female and male ends, respectively, of standard panels. At the junction, each post has two other connecting lugs, a male and female lug at the top according to type, and a universal jaw at the base. Irrespective of type, two posts can be connected at the base by a normal panel pin. Always use a bridge pin retainer on the panel pin at this joint. An intermediate pin hole and recess in the base of each post is for the junction link.

During launching, connect the top lugs of the posts by a launching-nose link Mk II. The link will fit only between one female span junction post and one male span junction post, so take care when constructing the two spans to keep all the male lugs on the panels faced the same way. After the bridge is jacked down and posts are pinned to the junction link, remove the link; leave in the pin joining the two posts at their base. Then the gap between the two lugs of the posts allows an upward slope of 1 to 6.7 or a downward slope of 1 to 5 in one span when the other is level.


The female span junction post weighs 202 pounds ( 91.8 kilos) and the male span junction post weighs 194 pounds ( 88.2 kilos).

## M2 JUNCTION CHESS

Junction chess (Figure 17-6) span the gap in the bridge deck between the ends of the two spans connected by span junction posts. Four junction chess are used at each span junction.

The junction chess consists of two 6 -foot $101 / 2-$ inch ( 2.1 meters) timbers fastened to nine steel I-beams $111 / 2$ inches ( 29.3 centimeters) long. The junction chess weighs 149 pounds (67.7 kilos).

## JUNCTION LINK

The junction link (Figure 17-7 page 216) transfers the end reaction from two-span junction posts to a junction-link bearing. Its use limits truss reaction to 25 tons (22.8

The junction link is a triangular-shaped steel assembly with two projecting male lugs on its top side spaced to pin with panel pins to the two-span junction posts. Both holes are elongated to permit some play in the joint. A bridge pin retainer must always be used on the panel pins at this joint. The bottom of the junction link tapers down to a nose with a tubular bearing which seats in the curved bearing plate of the junction-link bearing. The junction link weighs 36 pounds (16.4 kilos).

## JUNCTION-LINK BEARING

The junction-link bearing (Figure 17-8) is used under the junction link which supports the ends of the bridge. It can be used in the following ways:

- When supported by a vertical panel, if male lugs of panel are uppermost, pin jaws of the junction-link bearings to the panel lugs. If female lugs are uppermost, rest jaws of junction-link bearing on top of lugs and fasten them by chord clamps.
- When supported by a crib capsill (Figure 17-5, secure it to the capsill with chord clamps.
- When supported by a crib bearing, pin bearing to two center holes of junctionlink bearing with panel pins.
- When used under female end of vertical panel, rest female lugs of panel on jaws of junction-link bearing and secure them by chord clamps.
- When supported by timber, lay junctionlink bearing directly on a timber support.

The junction-link bearing is made of two 8inch ( 20.4 centimeters) channels welded back to back with the same spacing as between channels in the chords of the panel. It is 5 feet 1 inch ( 1.6 meters) long and has female jaws at each end. The distance between panel-pin holes in the female jaws is 4 feet 9 inches (1.5 meters), the same as vertical distance between pin holes in the pane). Between the webs of the channels in the center of the junction-link bearing is a curved bearing plate on which the junction link bears. There is a hole through the webs of the channels just above the curved bearing plate for a captive pin which locks the junction link in place. There are two panel-pin holes in the webs of the channels beneath the curved bearing plate. They are used to pin the crib bearing which fits in the recess between the channels. A junction-link bearing weighs 217 pounds ( 99.3 kilos). Its maximum capacity is 25 tons ( 22.8 metric tons) (Table A-14, Appendix A).

## CHORD CLAMP

The chord clamp (Figure 17-9) is used to pin-

- Crib capsill to panel chord (Figure 17-10). Chord clamps are pinned to any of the holes in the capsill.
- Crib capsill to female jaw of panel.
- Crib capsill to junction-link bearing (Figure 17-5).

figure 19.7 danction itink


Fincre 1T-4 dunction-tink bearing

- Junction-link bearing to female jaw of panel.

The chord clamp is in effect a double-length male lug with two panel-pin holes and a Thead. Slip the clamp between chord channels of a panel until the head bears on the channel flanges; then pin the clamp to a crib capsill or other female joint with a panel pin. If the

chord clamp is slipped through two adjacent female jaws, pin it to each by panel pins through both holes in the chord clamp. The chord clamp weighs 11 pounds ( 5 kilos).



## CRIB CAPSILL

The crib capsill (Figure 17-11) distributes the load from the bridge to the main chords of vertical panels or to the three verticals of horizontal panels in a crib. It has unreinforced holes used to take the vertical load. Before panel pins can be inserted in reinforced holes, the holes must be reamed or filed slightly. The reinforced holes are used to pin the capsill to the following:

- Male lugs of single vertical panels.
- Male lugs of two adjacent vertical panels.
- Crib bearing (Figure 17-12).

The crib capsill is made of two 4-inch (10.2 centimeters) channels welded back to back to spacer lugs with the same spacing between channels as in the chord of the standard panel. It is 10 feet 2 inches ( 3.1 meters) long, and has female jaws at each end. Holes are spaced along the webs of the channels. Six pairs of panel-pin holes are reinforced with steel blocks and spaced so male lugs of two adjacent panels or of a single panel can be connected to the crib capsill with panel pins. Additional unreinforced holes for chord clamps are spaced generally at 6-inch (15.3 centimeters) centers between reinforced holes. Before panel pins can be inserted through the holes they must be reamed or filed slightly. The crib capsill weighs 251 pounds (114.1 kilos).


- Two central holes of a junction-link bearing.

[^5]



[^6]
 bearing to jHOnide rociker bisaring

The crib bearing can be spiked to a timber sill (Figure 17-14) to provide a rigid base or set on a standard bearing (Figure 17-15) to provide a rocker bearing. The bearing area of the pin is 1.875 inches by 3 inches, or 5.625 square inches ( 36.4 square centimeters).

The crib bearing is in effect a double-length male lug welded horizontally to a base block. One of the pin holes is elongated to make pinning easier when both holes are used. If only one hole is needed, the circular one is used. Holes are provided in the base block of the crib bearing for spiking to a timber sill. The underside of the base block has a semicircular bearing to seat on a standard bearing. The crib bearing weighs 37 pounds (16.8 kilos).

## CRIB LOAD AND CAPACITY

The amount of load on and the capacity of a crib must be determined Chapter 16 describes a method for determining the approximate
load transmitted to the crib by the ends of two independent spans. Continuous-span assembly over the pier transmits greater load to the pier. These reactions are listed in Table 16-4.

Figures 17-16 and 17-21 (pages 220 and 222) show standard assembly of piers built with special panel-crib parts. Capacities are given in all cases. Single-truss cribs can take 50 percent of the loads given for double-truss cribs with only the inner truss loaded. Use single-truss cribs only for light loads on low cribs. The capacity of panel crib piers is usually limited by the strength of the junction link, junction-link bearing, and crib capsill (Table A-14, Appendix A).
If special panel-crib parts are not used, the load is carried by the top members of vertical panels in the crib. Lay timber on top members of each panel to concentrate load at three points: at the center, and near each end adjacent to the panel chords. With the load applied in this manner, the top member of one vertical panel will carry about 14 tons ( 12.7 metric tons), and piers with this type of bearing will have the same capacity as piers of corresponding assembly built with special parts (Table 17-3, page 222).
Table A-14, Appendix A gives the strength of the individual panel-crib parts for use in estimating the capacity of expedient panel cribs.



 parala horlanntali hrider holest iNate enb

 Hripie-atary dowbre-bay erih writh perwith doth horizontal and vaplical


Figyin df-I9 Single- to injote-rfory dowbig-hay withprancite uspficelf; cundancurw briafec with rocher batame ad hatye uf (rfor


Parure 1720 singtare torpte-ptont foubict-bay wirh pancis vertical; unth hridge bruker oupir enh

Tahly : 9.3 Capacity of bridge picr atummbited'fruat batic bridet sed


Figure 7725 Four. to füe-atary crib with pancir vertical; with bridge broken ader crib

## BILLS OF MATERIAL

Table A-15, Appendix A lists the number of parts required to build the standard crib piers illustrated in Figures 17-16 through 17-21, and the number of unit truck loads required to supply these parts. Panel-bridge conversion set No. 3, panel crib pier, supplies the special panel-crib parts to build a 31 -foot 7 inch triple-triple pier with the addition of standard panel-bridge parts. The parts in conversion set No. 3 are listed in Table A-4, Appendix A The conversion set No. 3 makes two crib-pier loads, each carried by a 5 -ton dump truck. These truck loads are described in Chapter 2 The number of crib-pier loads and standard unit truck loads required to build each pier are given in Table A-15, Appendix A.

When using this table, note the following

- Plain bearings and base plates are not supplied in loads needed to build a pier. (Use extras from bridge construction.)
- Launching links Mk II are used for launching only. Remove them after bridge is in place.
- Panel pins listed do not include pins for launching links Mk II.


## STANDARD ASSEMBLY OF TRUSSES AND BRACES

The trusses in standard panel crib piers are parallel to trusses in the bridge. The crib must have at least the same number of trusses as the bridge it is to carry. More


Figure 17.22 Cionarup vimw of bracing in a quadruple-truan erib pier
trusses can be added for increased strength (Figures 17-16 through 17-21). Single-truss assembly can be used only for low cribs carrying light loads. The number of bays in the pier will normally be enough to make the length of the base one third or more as much as the height of the pier (Figure 17-21). All possible bracing frames and tie plates tie trusses together at each side of the crib. In a quadruple-truss pier, bracing frames and tie plates overlap. Brace the entire crib by transoms and sway bracing (Figure 17-22).

In cribs with vertical panels, space transoms at 10 -feet ( 3.1 meters) intervals in piers up to 30 feet ( 9.2 meters). In cribs only one bay long, invert panels of inner trusses with respect to panels in outer trusses so transoms can be attached to both chords. Sway bracing is on the same side of the crib throughout its height. In cribs with two bays of vertical panels, place panels so transoms and sway bracing are either at the center of the crib or at its sides. In cribs with four bays of vertical panels, add extra sway bracing in the outer bays Figure 17-21).

In cribs with horizontal panels, half the panels may be right side up, and the other half inverted so transoms are at both top and bottom. Vertical-plane cross bracing may be provided by sway braces pinned to the swaybrace slot of the inverted second truss and fastened to the transom at the other end, or the sway bracing may be used as described later in this chapter.

In cribs under two-lane panel bridges, stagger transoms at the center panels Figure 17-23). When panels are vertical, transoms in one half under one lane are all on top of panel verticals; in the other half, under panel verticals. At the top and bottom of the crib, transoms can be placed only on the side of panel verticals. Therefore, angles must be welded to the panel chords to take the place of alternate transoms (Figure 17-23, page 224). When the panels are horizontal, angles are also used to replace alternate transoms. Guy high piers to provide greater lateral stability.

## BRIDGE SEATING

If the bridge is broken over the pier so the two spans act independently, use span junction posts, junction links, and junction-link bearings to seat it (Figure 17-5). If the crib is pivoted at its base so the bridge is fastened directly to the crib, slip chord clamps between the channels of the bridge chord and pin them to the crib capsill (Figure 17-16).

Figure 17-15 illustrates rocker bearings using panel-crib parts. This type of rocker bearing rests on abase plate on top of the pier. A wide platform on the top of the pier, to allow some leeway in positioning the baseplates, may be built from transoms and ramps welded in place (as described in the following paragraphs). An expedient rocker bearing may be made from one or two tranverse beams set on the top of the pier. The bearing must be under a panel vertical or the junction of panel diagonals. Figure 16-15 illustrates another expedient bearing.

## CRIB BASE

There are several ways of setting panels onto a crib. With a fixed base, if panels in the first story of the pier are horizontal they may be set directly on a timber or masonry pier foundation (Figure 17-17). If panels in the first story are vertical, pin the female jaws of the panels to crib bearings which are set on timber or steel footings (Figure 17-20).

With a rocker base, the rocker may consist of a crib bearing seated on a standard bearing (Figures 17-15 and 17-16) or an inverted junction-link bearing set on an inverted junction link (Figure 17-16). The procedure is as follows:

- If panels in lower story of pier are horizontal, fasten crib capsill by chord clamps to bottom chord. Then pin this crib capsill directly to crib bearing (Figure 17-16), or by chord clamps to inverted junction-link bearing (Figure 17-16)
- If there is one bay of vertical panels with female ends down in the pier, connect female jaws by chord clamps to top of a junction-link bearing pinned to a crib bearing.
- If there are two bays of vertical panels, pin the two adjacent center female jaws to a crib bearing which is on a standard bearing (Figure 17-19).





## EXPEDIENT ASSEMBLY (STANDARD TRUSSES)

If no special panel-crib parts are available, the following expedient parts can be improvised for standard truss arrangement:

- Panel chords or any pair of 4-inch (10.2 centimeters) or larger channels with holes drilled at the desired spacing can be used for improvised crib capsills.
- Angles or lugs with pin holes in their upright parts can be fastened to the crib foundation and panels pinned to them. Another expedient is to have panel pins in female jaws of vertical panel bear on top of an I-beam or rail (Figure 17-24). A load of $71 / 2$ tons ( 6.8 metric tons) per panel pin is allowed on unstiffened beams having a web thickness of $1 / 4$ to ${ }^{5} / 16$ inch $(.6$ to .8 centimeters). Greater loads are permitted if web is stiffened or if web thickness exceeds ${ }^{3} / 8$ inch (. 1 centimeter).
- Other special panel-crib parts are not readily improvised.


TS |tht PANEL CRIB PIER


TS IZW PMNEL CRIB PEER

| 1 HASE PLATE <br> 2 Chess <br> 3 ThANsoms | 4 HORIZONTA PANELS IN PIER <br> 5 RAMP SECTIONS <br> E FOOTWALK | 3 FDOTWALK BEARER $a$ VEATILAL PANELS IN PIEA a cespille |
| :---: | :---: | :---: |

Fifure 17.75 Expedient men of Iranaoman and rampi to proudits afint top on the crib

## Bridge seating

Bridge seating assembly without panel-crib parts can be done as follows:

- Figure $17-25$ shows the use of transoms and ramp sections to provide a flat top on the crib for the base plates under the rocker bearing. With this type of pier cap, the bridge may be as much as $61 / 2$ inches ( 16.5 centimeters) off the center of the pier. This is made up from a $41 / 2$-inch ( 11.5
centimeters) movement of the bearings on the base plate and a 2 -inch ( 5.1 centimeters) movement of the baseplate on the pier top, Figure 17-26 (page 227) illustrates the vertical dimensions and capacities of piers with flat top and rocker ridge bearing.
- The bridge seating may consist of timber laid laterally on the end-panel member,
but it is allowed a slight longitudinal movement.
- The pier can also be pinned to the bridge by pinning male lugs of the two inside posts of the pier to the lower bridge chord and inserting the outer posts in the space between channels of the lower chord. These outer posts just miss the center vertical in the bridge panels. If the outer
post shoulders are cut down enough to permit deflection in the span, this connection can be used with a rigid pier base The top chord of the bridge is left un-
pinned so the two spans act independpinned so the two spans act independ-
- Another method of bridge seating is to insert the male lugs of the pier posts into recesses in the lower bridge chords. Clamps made from two tie plates and ribband bolts anchor the bridge to the pier. This and the last two methods are limited because there is only one pier position in which the lugs fit withou

Crib base rib parts, set the crib on timber and have the cribbing bear on the bottom panel member.

Panel connections
To connect horizontal and vertical panels,
cut away the reinforcing plate at the bracing-
bolt hole and slip the male lugs of the vertical
panel between the channels of the horizontal
chord. Tie panels together by an expedient
famp made from tie plates and ribband bolts
Figure 17-27 page 228).

(1)



Hencisotaroci,






## FM 5-277

 arrangements.

Trusses Expedient panel cribs can be built with panels
transyerse to the bridge axis, as in Figur 17-28 This type of construction is usefu when the pier is skewed or when the pier foundations are restricted. Two panels pinned width. In Figure 17--28 trusses are braced together by bracing frames in every possible position, Bracing Prames are overlapped at each end and 5-inch- ( 12.7 centimeters) long bolts replace standard bracing bolts. In lighter one-story piers, the two panels are connected by tie plates.
The crib may be built in the form of two cellular columns, one under each side of the
bridge, as in Figure 17-29 (page 230). Each column is made of four vertical pan arranged in a square offset 45 degrees from the axis of the bridge. Weld chords of adjacent panels to angles. Cap panels with improvised capsills, and lay timber cribbing across
capsills. The crib base is similarly concapsils. Tie crib base is simiarly conreds welded between them

Bracing
More than one story of horizontal panels can be used if more expedient vertical cross bracing is added. Figure 17-30 (page 231) bracing a double-story pier to carry pligh loads. Bolt tie plates to one end of the sway


## 

braces on an extension. Bolt lengthened sway braces diagonally between the lower bracing frame hole in the end vertical of one truss and vertical on the opposite truss. As an alter native, vertical sway braces can be used in each story.

Pin the braces to the bottom chord of the second panel, bend them up, and weld them
the underside of the top chord in the opposite inner truss (Figure 17-31, page 231). For heavier loads, channel sections welded across each end of the crib give a more rigid cross brace Figure 17-31



## ASSEMBLY OF CRIB PIER

Use the following sequence of procedures when building crib piers by manpower alone:

1 Lay out and accurately level pier foundation. Mark panel positions accurately. Position crib bearings where these are used.

2 Carry up panels for trusses on each side of crib and lay flat on base with female jaws pointing to bearings. Lift up panels and pin to bearings.

3 Fasten transoms, rakers, bracing frames, and sway braces in the first story. Check that panels are vertical and square to the centerline.

4 Construct a working platform of transoms and chess in the first story. Haul panels up singly and lay them flat on the platform with the female jaws opposite the top lugs of the first story. Lift each panel in turn and pin it into position.

5 Fasten transoms and bracing in the second story and again check that the crib is vertical and square to the centerline.

6 Repeat for the number of stories required. An improvised gin pole or davit may be used to lift panels and transoms to upper stones.



Figifre I 7.29 Catiular-type panil totib pier


1 TIE PLATE EXTENSION IU SWAY EHACE 2 SWAY ERACE IN YERFICAL PLANE 3 HORIZONTAL PNHELS

## 

 in 4wo-tory pality frish pierUse the following procedures when building piers with mechanical equipment:

- If site conditions permit, a truck-mounted crane can be used to erect 20 -foot- (6.2 meters) high crib piers and the two lower stories of high piers. Assemble bays on the ground nearby, and lift the assembly into place by crane. For erecting higher piers, use a long-boomed crane.
- If pier construction is between existing high banks or piers, use cranes and high


1 CRMNMEL CROSS BRACLIG 2 BASE OF PIER SET IN CONCRETE

4 NORMAL SWAMY BRACING
$\$$ SWAY BRACE IN VERTICAL FLANE
t WELO YEATICHL SWMY ERACE TO UNDEASIDE OF ChORD

## Ni,

lines with winches on banks or existing piers to lift panels into place.

- If the bridge without the pier will carry the erection equipment, the pier can be constructed from the bridge. Use a truck crane or rope tackle to lower the panel over the side of the bridge into place on the pier. When all panels in the pier are in place, jack up the bridge over the pier to eliminate sag and allow placing of bridge seating. This last step can be eliminated by leaving the bridge on rollers at each
abutment until after the pier is completed. Rollers must be blocked up enough to keep the bottom chord above the level of the top of the finished pier.
- For a continuous-span bridge, the pier can be built by working from the end of a cantilever span.


## LAUNCHING OF BRIDGE

 Place rocking rollers on cribbing on top of the piers before launching the bridge (Figure 1732). Push the bridge out over these rollers until the entire bridge is over all the spans. Jack up the bridge, remove rollers and cribbing, and then jack down the bridge onto its seatings on piers (Figure 17-33). A temporary working platform may have to be built for operating the jacks (Figure 17-34 page 234). If the bridge is to have independent spans, disconnect the girders at each pier.
## JACKING DOWN OF CONTINUOUS SPANS

Where the distance through which the bridge has to be raised or lowered is more than a few inches, jacking has to take place on more than one pier at the same time. Since in this type of construction the whole girder is continuous, lifting through any distance progressively increases the length of bridge lifted and, thereby, increases the weight to be raised. This soon exceeds the capabilities of the jacks that can be brought into use on one pier. Where these conditions apply, a sequence of jacking on three piers at the same time, as described below, is the easiest method. This consists of raising the bridge through a smaller distance on each of the piers adjacent to the one on which the distributing beams are being fitted.




The ends of the bridge are first jacked up and lowered onto suitable cribbing slightly above final level. Three complete jacking parties are then required for the intermediate piers, working from the near bank and in the following steps:

1 The first party, working on the first pier, lifts the bridge clear, removes the rollers and lowers the bridge onto the cribbing, the height of cribbing being the same as that used at the end of the bridge.

2 The second party does the same on the second pier while the first party jacks up on the first pier, fits distributing beams, and lowers the bridge to the original level (level of top of cribbing).

3 The third party completes step 1 on the third pier and the second party then fits distributing beams on the second pier. The first party then lowers the bridge onto the bearings of the first pier.

4 The first party completes step 1 on the fourth pier, the third party then fits distributing beams on the third pier, after which the second party lowers the bridge onto the bearings on the second pier.

This sequence of steps is continued throughout the length of the bridge. By this means, the bridge is raised by a slightly smaller amount on the two piers adjacent to the one on which the distributing beams are being fitted. Strict control of the jacking parties is essential, however, to enable the distributing beams to be fitted on the center pier.

In the case of long bridges, it may be expedient to begin jacking on the center pier and work outwards toward the ends of the bridge. For this method, it is best to employ six jacking parties, three working toward each bank in the sequence of steps described above.

Where the distance through which the bridge has to be lowered is such that it cannot be achieved in three stages, increase the number of jacking parties.


Firure IT SA Temporary workine platiornt mande of trationat

## SPECIAL LAUNCHING METHODS

Special launching methods are needed when a restricted site prevents normal roller layout and launching by the standard skeleton launchingnose method. Space on either bank may be restricted in length or width by obstructions such as buildings, existing bridge girders, trees, and earthwork or by sloping banks and canal dikes. Limited backspace or length of assembly area on the near bank is the most common restriction. Backspace is measured from the near-bank rocking rollers to the limiting obstruction. Far-bank conditions are a less common restriction because standard launching tables allow progressive dismantling of all launching noses and this requires a minimum clear distance of only 12 feet ( 3.7 meters) beyond the far-bank rollers. Several methods included in this chapter, however, reduce far-bank requirements even more by landing directly on bearings and by inverting the nose assembly to clear low obstructions such as existing girders.

## USE OF COUNTERWEIGHTS

Restricted sites require the launching of Bailey bridges using fixed and movable counterweights. These can be used with standard launching-nose assembly for a site with limited backspace on the near bank. Several bridge bays are omitted during launching. Counterbalance of the span is maintained by placing a counterweight in the last bridge bay equivalent to the missing bays.

These counterweights can also be used with launching-tail assembly for sites with farbank limitations preventing use of launching nose or far-bank rollers. Use counterweight tail instead of standard skeleton nose to keep balance point behind near-bank rocking rollers during launching. Launch bridge with end posts mounted on leading end and land it directly on far-bank bearings.

## Types of counterweights

Any available material of known weight, such as spare bridge parts, sandbags, or vehicles can be used as a fixed counterweight. Add this counterweight to the end bay of the bridge or tail just before final launching to the far bank. When launching with a movable counterweight, add it earlier in the bridge assembly and roll it back onto successive end bays to counterbalance progressive launching stages. The two types of rolling counterweights are vehicles and rolling platforms. Trucks, trailers, tanks, tractors, and bulldozers mounted on the bridge deck are pushed, or moved back under their own power, as assembly progresses. Vehicles can be loaded to weights shown in launching tables or shifted slightly in position on the deck of the end bay to provide correct counterbalance. Backspace is often increased by requirements for ramps and space to maneuver and mount the vehicle on the deck.

Figure 18-1 (page 236) shows two movable platforms rolling on inverted plain rollers.

Add more counterweight in the form of spare bridge parts, sandbags, or any available material of known weight. Platforms can be used singly or together with either a skeleton launching nose or launching tail. Special details in assembly and launching are as follows:

- Four plain rollers are required for all lower platforms and for atl upper platforms on single-single bridges. Upper platforms on double-and triple-truss bridges require eight rollers. In tripletruss assembly, upper-platform rollers must not bear on the outer trusses. Rollers need not be fastened to the stringer framework.
- Platforms are moved by block and tackle on both trusses
- Horizontal bracing frames on the top bridge chord are added after the bays have passed under upper platform rollers.


## Backspace and limitations

Table 18-1 (page 236) shows the backspace required to launch fixed-panel bridges by the standard launching-nose method without the use of counterweights. The center of gravity or balance point of the bridge is always kept at least 2 feet ( 61.1 centimeters) behind the near-bank rocking rollers. Distances in the table include 12 feet ( 3.73 meters) to add the last bay of bridge or tail. All backspaces


## Pagurv is－r Rading phatform oounter weiphita

include 2 feet between the center of gravity of the bridge and near－bank rocking rollers and 12 feet to build the last bay of the bridge or tail．

All counterweight methods increase launching weights．Maximum spans launched by these methods are therefore shorter than those launched by the standard launching－nose method because of the re－ sulting increase in combined stress in the lower chord over the launching rollers．

> LAUNCHING NOSE AND COUNTERWEIGHT (ROLLING)
> The length of launching nose, composition of nose and bridge bays, and organization of
working parties are the same as in standard－ launching method Chapter 6．However，use of a counterweight instead of end bays as counterbalance for cantilever launch to far bank requires several changes．On double－ single assembly，use plain rollers in pairs （one under each truss）instead of singly as in the standard method．All launching noses can be moved forward from 12 to 17 feet，after the assembly of the first bridge bay，to allow mounting of rolling counterweight on deck．If more space is needed，add temporary fixed counterweight to the bridge or adjacent nose bay and launch nose further over gap． Assemble all bridge bays complete for final launch to far－bank rollers except for triple－ single and double－double bridges，which are

Table t9．i Ebaekppaer in fret reowired to launch fixed parei bridice by the otathdurd lanching． mone method

|  | SPFAM［PLJ | BuCutpdetitt |
| :---: | :---: | :---: |
|  | 10 | 15 |
|  | 40 | 41 |
|  | 50 | 47 |
|  | 60 | 55 |
|  | 70 | 65 |
|  | 40 | 67 |
|  | 98 | 15 |
|  | 5 | 45 |
|  | 40 | 5 |
|  | 70 | 57 |
|  | 40 | 64 |
|  | 9 | 71 |
|  | 190 | 16 |
|  | 110 | \＄3 |
|  | 120 | 50 |
|  | 130 | 3 |
|  | 79 | 43 |
|  | 维 | 70 |
|  | 100 | 14 |
|  | 110 | 19 |
|  | 110 | 4 |
|  | 130 | 41 |
|  | 140 | 140 |
|  | 104 | 7 |
|  | 110 | 11 |
|  | 120 | 16 |
|  | 了鄗 | 13 |
|  | 140 | 180 |
|  | 150 | 106 |

double－single assembly in end bay．To speed assembly after landing on far bank，add remaining bridge bays，complete launch，and remove nose．Install far－bank end posts，jack down，and install ramps．Move rolling counter－ weight to far－bank end of bridge，install near－ bank end posts，and jack down．Position near－bank ramps and remove counterweights．




Table 18-2 gives assembly for all bridges that can be launched with an appreciable reduction in backspace over the standard method using either fixed or rolling counterweights of the amount shown. Data are based on the following assumptions:

- All counterweight is centered in end bay of bridge.
- Minimum backspace for any bridge is that required to assemble the launching nose and first bay of bridge without counterweight.
- Length of bridge for launching with rolling counterweight of amount shown in Table 18-2 requires about the same backspace as required to assemble nose and first bay.
- All bridge bays are decked and complete at critical launching stage except that end bays of triple-single and doubledouble bridges are double-single construction. Bridges are launched without footwalks.
- Fixed counterweight is added to end bay for final launching only.
- Rolling counterweight is added on first bridge bays and rolled back onto successive end bays.


## LAUNCHING TAIL AND COUNTERWEIGHT (FIXED)

 The launching-tail method differs from the standard nose and counterweight method in several ways. The tail is of exactly the same assembly as bridge bays (Figure 18-2). All bridges are launched without deck and stringers, except the end bay of the tail when using fixed counterweight. End posts mounted on leading end of the bridge and landing directly on bearings eliminate rollers and jacking down on far bank. The length of bridge required is 2 feet 6 inches ( 76.4 centimeters) longer than launching span or gap, instead of 5 feet ( 1.5 meters) as for the launching-nose method (Figure 18-2). Since there is no nose into which launching links can be inserted, allow for sag made by difference in elevation between near-bank rocking rollers and far-bank bearings, unless site conditions allow cantilever end of a manually launched bridge to be raised by bearing down on tail at end posts near bearings.Table 18-3 gives necessary data for launching with tail and counterweight. Tails shown are of minimum allowable length to maintain chord stresses over rocking rollers within allowable limits. Where the site permits the use of longer tails, corresponding lighter counterweights can be calculated by taking moments about the near-bank rocking rollers. When using rolling counterweight (upper platform, Figure 18-1), values shown in the table must be increased 1.5 tons ( 1.4 metric tons) in place of end-bay deck and stringers.


Figure IN I Sinte tapoat for foumphing with call and conntorwetght

Data in Table 18-3 are based on the following assumptions:

- The bridge is launched without footwalks, deck, and stringers, but with far-bank end posts.
- Tail construction is same as bridge.
- Counterweight is 5 feet from end of bridge.
- Sags are approximate (add 6 inches for end-post projection).
- Two bays of the second story are omitted at leading end of bridge.



- Five bays of the second story are omitted at leading end of bridge.


## INVERTED LAUNCHING NOSE

Far-bank sites with low obstructions and limited clearance widths, such as low sidewalls or existing girders on narrow piers, which interfere with launching-nose transoms, can often be cleared with inverted launching noses. Assembly is the same as in standard launching tables except that nose panels are inverted and transoms, rakers, and sway braces are in the upper instead of the lower chord. Vertical clearance beneath
transoms is increased 3 feet 6 inches (1.1 meters). Launching links are placed in the lower chord as in the standard nose.

## LAUNCHING PLATFORMS

When a launching site is sharply sloped, launching platforms may be built as follows:

- In launching from sloping banks or over canal dikes (Figure 18-3, page 240), rollers can be supported on panel crib piers Chapter 17) to provide a level launching site.
- Panel bridges can be assembled in place or launched without nose or tail over continuous timber or panel falsework or cribs 25 feet ( 7.6 meters) on centers across the gap. With rollers spaced 25 feet (7.6 meters) apart, sag requires jacking of leading end as it reaches roller position. For a double-single bridge, the sag of the leading end will be 2 to 3 inches ( 5.1 to 7.6 centimeters) with a 25 -foot ( 7.6 meters) overhang.


## END-ON ASSEMBLY

End-on assembly of a panel bridge is the successive addition of bays on the cantilever end over the gap. Use no rollers. Support the bridge during assembly on a packing of timber and transoms under the bottom chord. Provide counterbalance either by the simultaneous addition of tail of the same length and assembly as the bridge or by a shorter tail and heavy counterweight. Position panels with improvised davits and rope tackle or cranes.


Fiytry IN. 7 Merthuti of ovxembling partel bridgc, Baitcy type, for hridgeng


This method can be used on all types of restricted sites, being particularly adapted to building from the top of canal dikes. Using the short tail and counterweight, it requires the least backspace of any launching method.

Forward packing at the edge of the gap must distribute the weight of the bridge over at least 3 feet ( 91.4 centimeters) of the bottom chord to prevent buckling. Rear packing supporting the tail must be low enough to give sufficient initial slope to counteract sag and bring the end posts over the far-bank bearings.

A timber 8 inches by 8 inches by 20 feet (20.4 centimeters by 20.4 centimeters by 6.1 meters) and a four-way block and tackle with $3 / 4$-inch (1.9 centimeters) diameter rope can be used as an improvised davit. Braced at a 45-degree angle (in double-story and triple-story assembly, against a transom at the lower end) so the upper end of the timber extends about 5 feet ( 1.5 meters) above and beyond the end of the trusses, each new panel can be accurately placed with the block and tackle suspended from the upper end of the timber.

Tail and counterweight are kept to a minimum by installing only such decking on the cantilever over the gap as required to operate the davits.

## SWINGING ACROSS CANALS

Panel bridges can be swung across diked canals by assembling complete with launching nose or tail on top and parallel to
the near-shore dike, and pivoting the bridge about its balance point on improvised pipe rollers.

## LAUNCHING WITHOUT ROLLERS

Single-single bridges up to 40 feet (12.2 meters) long can be launched by soldiers without rollers by skidding on greased beams. Place greased timbers or greased stringers at the edge of the gap and 20 feet ( 6.1 meters) back under each line of trusses. Assemble the bridge on the skids with one transom per bay and no stringers or chess. Add three bays of tail with two transoms per bay and stringers in the last bay as a counterweight. Then push the bridge out over the gap with the aid of pinchbars and levers. Soldiers on the far bank lift the front end onto blocking. Remove the tail, add end posts, and jack down the bridge onto bearings. Complete the bridge by adding a second transom in each bay and laying decking and ramps. If end posts and bearings are not available, support the ends of the bridge as described in Chapter 22

## LAUNCHING BY FLOTATION

There are several advantages of launching by flotation. With this method a large assembly site is not needed and it can be away from the centerline of the bridge. Also, a launching nose or cantilever tail is not needed.

The disadvantages of launching by flotation are that the gap must be water-filled with sufficient unobstructed depth to float a loaded ponton. In a stream current over 3 feet ( 91.4 centimeters) per second, it is hard to maneu-
ver the rafts. This method also takes longer than normal launching procedures.

## Multiple spans

For launching intermediate spans by flotation, use pontons of suitable capacity under each end of the span to float it into position. Place cribbing on pontons to raise the bridge so the lower chord clears the top of the piers. Make sure the bridge overhangs pontons at each end; this provides clearance for maneuvering between piers when floating the span into position. Normally, launch the span on ponton rafts just downstream from the bridge site. The launching sequence for a typical 90 -foot triple-single span on pontons (Figure 18-4, page 242) is as follows:

1 Assemble far-shore raft with two pontons and enough cribbing to keep end of bridge above pier. Assemble bridge on rollers on shore. Place launching rollers slightly higher than cribbing on raft.

2 Push bridge on rollers until it rests on far-shore raft with enough overhang to ensure clearance between raft and pier when span is in position over pier. Continue to push bridge and far-shore raft until end of bridge is near rocking rollers.

3 Assemble near-shore raft with four pontons and cribbing. Pump water into nearshore raft until it can be floated under shore end of bridge. If near-shore raft cannot be brought close inshore, place rocking rollers on cribbing on near-shore raft.

4 When raft is in position under bridge, pump water out until lower chord of span is supported by cribbing or rocking rollers (whichever is used) on raft. Continue pumping until span is raised clear of faunching rollers on shore. If rocking rollers are used on raft cribbing, roll span into position and insert picket through lower chord of span and rocking roller to hold span in position.

5 Maneuver raft into position between piers.
6 Pump water into pontons until span is supported on piers. Remove rafts.

Note: Instead of pumping water into and out of the pontons to raise and lower the bridge, use jacks on top of each raft. To raise the bridge, jack it up and insert more cribbing. To lower the bridge, jack it up, remove cribbing, and jack the bridge down.

For a shore span with assembly on and off centerline, the launching sequences are as follows:

- For assembly on centerline, launch the shore span from rollers on the abutment along the bridge centerline. Place the front of the bridge on a raft and float out to seating on bent. Then jack up tail end, remove rollers, and jack bridge down on bearings. If end posts are not used and end panels of adjacent spans are connected by panel pins over the bent, cribbing may raise shore end of span too high and only top panel pins can be


inserted. Then remove top pins and jack down shore span to bearings on abutment.
- For assembly off centerline, assemble and launch the shore span in the same manner as the intermediate span, floating it into position between the abutment and first pier.


## Single spans

For single spans launched by flotation with the assembly either on or off centerline, the launching sequences are as follows:

- For assembly on centerline, float front end of bridge on raft across gap as bays of bridge are added at tail which is on rollers on near shore. Use enough cribbing on raft to keep front end of bridge above farbank abutment. Launching links and a short upturned nose ahead of raft can be used to raise the end high enough to clear the far-bank abutment.
- For assembly off centerline, assemble span off centerline of bridge and launch on rafts. Float span into position between abutments and lower into place. Cribbing on rafts must keep bridge above abutments and overhang must be enough to prevent grounding of rafts.


## LAUNCHING BY SINGLE GIRDERS

It may be advisable to launch a panel bridge one girder at a time. This method is advantageous when launching from an existing bridge where piers are wide enough to take the ends of a new span, but the existing bridge is not wide enough to launch the new span complete. Such launching is recommended when there is-

- An existing through-type panel bridge (Figure 19-1).
- An existing through-type civilian bridge where the width between side walls or trusses is less than 20 feet $81 / 2$ inches ( 6.32 meters) (Figure 19-2).
- An existing deck-type bridge where width of deck is less than 20 feet $81 / 2$ inches (6.32 meters) (Figure 19-2).
- A launching of span of panel bridge to a point much lower or of varying height, as
to intermediate landing bay of a floating bridge in tidal water (Figure 19-3).








## TYPES OF GIRDERS

A single girder may be made up of a single truss or of two or more trusses connected by bracing frames and tie plates. Five trusses are the maximum number that can be handled practicably Figure 19-4 (page 246) shows girders with various combinations of two to five trusses. Single, double-, and triple-truss girders are used for through-type panel bridges. Any of the girders may be used for a deck-type panel bridge.
To save launching time, the wider girders are preferred to many narrow bridges. Four- and five-truss girders usually are used for multilane deck-type bridges.

## Assembly sequence

The assembly sequence for launching by single girders is as follows:
1 Assemble girder on deck of existing bridges and then launch over gap.

2 Lower or slide it into position and then launch next girder.

3 To complete the bridge, add standard sway braces, transoms, stringers, and decking, or expedient bracing and flooring.

## Methods of launching

Single-truss girders may be launched with gin poles or high line. Multitruss girders may be launched by any one of the following methods:

- Counterweight.
- Launching nose.
- Gin pole and snubbing tackle.
- High line.


## Working parties

The size of working partles varies with size of girder. To assemble girders, divide soldiers into panel parties, pin parties, and bracing parties. Combine them to launch the girders. After the girders are in place, divide the soldiers into bracing and decking parties to complete the bridge.

## Limitations

There are limitations of this kind of launching. Launching by single girders takes longer than the normal method of launching panel bridges.

A girder is always launched as a single-story girder; other trusses or stones are added after the girder has been launched. Bracing frames between trusses prevent overturning and give the girder rigidity. (However, when launching long girders in the wind with counterweight or launching nose, the end is subject to considerable whipping.) And plain rollers must be placed under every truss to support the girder evenly and prevent twisting.

## LAYOUT OF ROLLERS

Plain rollers are used in sets under the girder, so each truss rests on a roller. In some cases, plain rollers must be staggered to prevent interference between rollers. Figure 19-4 shows the arrangement of plain rollers in sets under the girder.

Rocking rollers cannot be staggered. When trusses are spaced 1 foot 6 inches ( 5.3 centimeters) on center, rocking rollers are placed under every truss. The two outer trusses are spaced $81 / 2$ inches ( 21.6 centimeters) on centers by tie plates and a single rocking roller is placed under the inner of the two trusses Figure 19-5, page 247). Remove the outer guide roller. Wedge shims between tie plate and chord-channel flanges to prevent outside truss from slipping down. Under the fourtruss ( 2 -foot $21 / 2$-inch) ( 67.4 centimeter) girder, the rocking rollers gre placed under the outer trusses (Figure 19-6, page 247).


ODURLE THUES



Thiple Thuss
｜ $\mathbf{z}^{2} \mathbf{2 1} \mathrm{~m}^{\prime \prime} \mid$


TAIPLE TRU的
ばロ


FOUN－THUES Cravil

poun－Thust
［2＇117］


TWETRUSS
f4＇5＂｜

## 

1 OM TOP OF PANEL
2 OH TOF OF EXEN．NUMBEREO PANELS
3 ON TOP OF ODD Nutatered PanELS
4 ON FRONT END OF EVERY PAMEL
G ON BACK END OF EVERY PAMEL
GON BACK ENL OF EVEN－NUNBEEREO PAHELS
70 OH BCI ENO OF OOG－NUNBERED PANELS THE PLATES
GON TOPOF ENEN－NUMBEAED PAMELS
3 ON TOP OF OLD－NUMBERED PAMELS
IOON FRONT END OF EVERY PANEL
11 ON GACK END OF EVERY PANEL
MAN ROULERS
12 TWO AOLEAS ON TEMPLATES PLACED GACK TO BACK
13 THAD ROLLEA AMO TEMPLATE EFHND FIRST PAJA OF FOOLLERS
14 SECDHD PAR OF ROUEFEAGAN TEMPLATES BEHIND FWASI PANB 18 TWO ROHERS ON TEMPLATES STAGGERED ONE BEFWD TME OTMER



Fisurf lis.i Arrangment of morking riliteru unter alipili truss pirafor


mader a four.lruss girder

The procedure for laying out sets is-

- Use rocking rollers at the edge of the gap and place plain rollers at about 25 -foot ( 76 -meter) intervals back along the girder (Figure 19-7. page 248). With double-truss girders, plain rollers can be used instead of rocking rollers at the edge of the gap.
- When using a counterweight Figure 19-8 page 249) or launching nose Figure 19-9 page 250), assemble and launch the girder on the side of the existing bridge nearest its final position. Assemble a second girder simultaneously at the other side of the deck of the existing bridge. Lay out rollers accordingly.
- When using a gin pole and snubbing tackle, two gin poles, or a high line, lay out the rollers so as to assemble and launch the girder along the centerline of the bridge.
- When launching from an existing panel bridge, place all plain rollers directly over transoms to avoid overstressing stringers (Figure 19-7). Set rocking rollers preferably on cribbing directly on the pier. If it is necessary to place the rocking rollers on the deck of the existing panel bridge, place them directly over the end transom. If the total launching weight on rocking
rollers is more than 14 tons ( 12.7 metric tons), use two transoms under the rollers; if the launching weight is more than 28 tons ( 25.5 metric tons), wedge the cribbing under the center of the end transoms.


## ASSEMBLY OF GIRDERS

The girder may have from two to five trusses (Figure 13-10).

Connect trusses of multitruss girders at every possible place by bracing frames and tie plates across the top chords and ends of panels. All tie-plate bolts must be tight and shims must be used to prevent the outer truss from slipping down when the end of the girder is over the gap (Figure 19-5). In girders with outer trusses spaced $8 \frac{1}{2}$ inches ( 21.6 centimeters), insert panel pins connecting the nose to the main girder from the inside so the nose can be disconnected after launching. In both the main girder and the nose, always insert the pins from the outside toward the centerline of the girder.

Place end posts on the front end of all trusses before launching, except when using a launching nose, in which case place the front end posts after the girder has been launched. Place the rear-end posts when the girder is in position for jacking down Table 19-1 (page 250) lists the parts required to assemble each type of girder.

## 1 ROCKING ROLLERS

2 户len
3 GAP

5 THIAD ROLLEA STAGGERED
6 EXISTING EAIDGE
7 ROLLEA PLACED DIAELTLY OVER TRANSDM





## LAUNCHING OF GIRDERS

There are several methods of launching by single girders. These are the counterweight, launching-nose, gin-pole and snubbingtackle, direct-lift, and high-line methods.

## Counterweight method

Launch a single girder by counterweight as follows:

- Add the counterweight to the rear end of the girder to balance the front end of the girder as it is pushed on rollers out over the gap. Long girders may be kept in line by using side guys and a pull winch from the far pier. When across the gap, the front end lands on rollers at the far bank or pier, or on landing-bay pier of a floating bridge. Then disconnect the counterweight, attach the rear end posts, remove the rollers at each end, and jack down the girder onto a skidding beam.
- Girders may be counterweighted either by adding weights to the last bay of a short tail on the girder or by making the girder of the same assembly and twice as long as the span so the tail alone will counterbalance the span. Table 19-2 lists weights needed on short tails to counterweight various spans of multitruss girders. (Longer spans cannot be launched by this method because of insufficient lateral stability.) If the long tail is used, it may be disconnected after the first girder is launched, and used for a second girder.






The counterweight method is useful when site conditions at the far side prevent use, removal, or disposal of a launching nose, or erection of a gin pole or high line. When launching long girders of a deck-type bridge, a counterweight permits tipping the far end directly onto the pier without jacking down.

## Launching-nose method

Launch a single girder by the launching-nose method as follows:

- Attach a lightweight launching nose to the front end of the girder, and push the girder with nose on rollers out over the gap. To compensate for sag, launchingnose links may be used in the same manner as when launching the normal
panel bridge. Long girders may be kept in line by using side guys and a pull winch. When across the gap, the nose lands on rollers on the far bank. Then disconnect nose, attach front end posts, remove rollers at each end, and jack down the girder onto skidding beams.

Table 19-3 (page 253) lists the types and lengths of noses needed to launch multitruss girders. Single-truss girders cannot be launched by this method. Brace launching noses the same as the girder. When launching the triple-truss girder with an eccentric double-truss nose, the nose must be dismantled bay by bay as it passes over the landing rollers. Otherwise, the nose beyond the landing rollers twists the girder, and may cause failure.

- The launching-nose method is used for longer girders, where sag is appreciable. It can also be used for girders too heavy for a gin pole or high line. Launching by this method is easier than with a counterweight, because the girder with nose is lighter than the girder with counterweight.

Gin-pole and snubbing-tackle method Launch a single girder by the gin-pole and snubbing-tackle method Figure 19-10, page 252) as follows:

- Erect a gin pole at the far bank or pier. Rig tackle from the gin pole to the front end of the girder with the fall line running to the winch of a truck on the bridge or bank. When a truck-mounted crane or tractor is used at the tail of the girder, lead the fall line around it by a snatch block at the side of the bridge. For long, heavy girders, attach guy lines near the center of the
girder on each side and control by winches on trucks to each side of bridge. The girder rides on rollers on the near bank. Brake it by snubbing tackle attached to the rear end of the girder to keep it upright and to lift it onto the bearings. Power applied to the hauling winch pulls the girder across the gap. Move a truckmounted crane forward with the girder, keeping the snubbing line taut to prevent too rapid movement. When the girder has passed its balance point, let it dip about one-tenth of its length to lessen stress in


|  |  | 40 | 50 | 40 | 76 | 8 | 90 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 3 | 3 | 4 | $4$ |  | $4$ |
|  | Gpurionepy htens) | 1.1 | 1.3 | 2.0 | 3.3 | 3.0 | 4.1 |
|  |  | 5.6 | I. 5 | 4.4 | 10.4 | 11.4 | 11.1 |
|  Itusts spetcio $\boldsymbol{z} \boldsymbol{z} \boldsymbol{h}^{4}$ |  | 3 | 3 | 1 | 4 | 5 | 5 |
|  |  <br>  | $\begin{aligned} & 1.4 \\ & 19 \end{aligned}$ | $\begin{array}{r} 1.7 \\ 14.9 \end{array}$ | $\begin{array}{r} 2.4 \\ 12.4 \end{array}$ | 4.4 | d.d | 6.2 |
|  |  |  |  |  | 15.] | 15.5 |  |
|  TRNSGES 5PACED 36 |  | 5 | 5 | 1 | 4 | 5 | 5 |
|  |  <br>  | $\begin{aligned} & 1.7 \\ & 45 \end{aligned}$ | $\begin{array}{r} 3.5 \\ 115 \end{array}$ | $\begin{array}{r} 3.9 \\ 17.7 \end{array}$ | $\begin{array}{r} 1.9 \\ 15.6 \end{array}$ | 4.431.0 | $\begin{array}{r} 6.1 \\ 14.9 \end{array}$ |
|  |  |  |  |  |  |  |  |
|  <br>  | 兑家 in $\mathrm{tai}^{\text {a }}$ | 3 | , | 1 | 4 | 5 | 5 |
|  |  | 2.1 | 4.5 | 3.3 | 5.1 | 5.9 | 1.7 |
|  |  | 11.1 | 14.7 | 16.5 | 203 | 22.2 | 25.4 |
|  inusses 5PMCD zil | taysin tail <br> Cownterraight ( $\mathrm{l}(\mathrm{ma}$ ) <br> Toul witht on daclund walms [reds) | $\begin{gathered} \xi \\ 2.1 \\ 31 . \end{gathered}$ | $\begin{gathered} 3 \\ 14.4 \\ 14.4 \end{gathered}$ | $16.5$ | $\begin{array}{r} 1 \\ 6.3 \\ 20.1 \end{array}$ | $\begin{array}{r} 5 \\ 5.5 \\ 22.9 \end{array}$ | $\begin{gathered} 5 \\ 1.4 \\ 25.7 \end{gathered}$ |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  TQUSSEF SPICED ('f" | Byyl In trid <br>  <br>  | 5 | 1 | 1 | J | 5 | 5 |
|  |  | 2.2 | 4.4 | 1.1 | 5.5 | 5.1 | 4.5 |
|  |  | 11.4 | 13.1 | 11.4 | \$1.6 | 23.0 | 26.7 |
|  |  | $\begin{array}{r} 2.7 \\ 11.5 \end{array}$ | $\begin{array}{r} 5 \\ 5.6 \\ 14.4 \end{array}$ | 4. 5.4 | 1.41.425.5 | 57.420.0 | 510.7324 |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

the tackle. After the girder is across the gap, the gin pole and truck-mounted crane lift it directly onto the bearings.

- When a truck-mounted crane is not available, two gin poles may be used, one on each bank. Attach both gin-pole lines to the front end of the girder, which is pulled over the gap by taking up on the far ginpole line and slacking off on the near ginpole line. When the front end of the girder is over the far bank, change the line from the near gin pole from the front to the rear of the girder. Then lower the girder onto its bearings.
- This method is better for short spans, since long girders are heavy and difficult to handle. It also saves bridge equipment, because it eliminates the need for either a launching nose or counterweight. In addition to handling girders, the gin pole and truck-mounted crane can be used to telegraph transoms and decking into place.


## Direct-lift method

Launch a single girder by the direct-lift method as follows:

- Assemble the girder on ground beside the piers. Use two cranes or gin poles to lift the girder into place on the piers. In case of a water gap, the girder may be floated out to the piers and lifted into place by cranes on rafts or on the piers. Cranes are



## 

not needed if the piers are low enough so the girder can be floated into place and lowered onto the piers by pumping water into the raft pontons.

- The length of girder that can be launched by this method is limited by the capacity of the cranes. If the girders are short and light, a single crane can be used.


| ITPE D Ginbet | fraçilht DC OUTER 1Russes | ITPE Df Mose | MUNGER DF RHYS IN MOSE LAUMCHI\#G WEIGHI IM TOW5 |  |  |  |  |  |  |  | SPAN PLIM MIEET MOSE |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | SPAM ${ }^{\text {\|iter }}$ |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | 40 | 50 | 50 | $\pi$ | 10 | \$ | 100 | 119 |  |  |  |  |
| DOUELE. 1RUS\$ | 16 | Douber thuss |  |  |  |  |  |  |  |  |  |  |  |  |
| IRJPLE truss | 820 | DOUDLE Thuss: | $1 /$ |  |  |  |  |  |  |  |  |  |  |  |
| Thiple. IEuss | $30^{\circ}$ | OCNBLE1545 | $1$ |  |  |  |  |  |  |  |  |  |  |  |
| 「THITLE. leuss | $\mathrm{SO}^{-}$ | IEIPLI IRUSS |  |  |  |  |  |  |  |  |  |  |  |  |
| foule. IquIS | $21 a^{\circ}$ | F DOA. Itu\$ $\$$ | $4$ |  |  |  |  |  |  |  |  |  |  |  |
| FOUR. 4. 465 | 2'14* | double1RN5 | $\sqrt{3}$ |  |  |  |  |  |  |  |  |  |  |  |
| four. rtuss | 46 | ocuple thuss |  |  |  |  |  |  |  |  |  |  |  |  |
| Tive. TRUUSS | 43* | tripte Itust | 10.0 |  |  |  |  |  |  |  |  |  |  |  |





## High-line method

 Launch a single girder by the high-line method (Figure 19-11) as follows:- Rig a high line of suitable capacity across the gap along the centerline of the bridge. Suspend the girder from the high line, pull it over the gap, and lower it onto skidding beams. Attach the trolleys on the high line to slings on the girder near the quarter points. Roll the girder on the approach span to its balance point on the first roller before it is carried by the high line. Use tag lines at both ends of the girder to control it during launching.
- This method is useful for launching decktype bridges where the girder has to be lowered a considerable distance to the skidding beams. In addition to handling the girders, the high line can be used to carry out the transoms and decking, and where trestle-approach spans are used, it can be used to carry out bridge parts for the approach spans. This method also eliminates the need for either a launching nose or counterweight. The capacity of high lines is usually limited to short single or double-truss girders. Table 19-4 lists the weight, in tons, of various lengths of girders.


## JACKING DOWN

Jack down the girders either with a jack under each end post or with jacks under an equalizing beam supporting the underside of the girder (Figure 19-12). Work the jacks in unison so the girder is lowered evenly. During the lowering, guy the girders to prevent




| H01485 | Şrtipc 0F |  |  |  |  |  | [itt |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 3F 17lutsts | Dulk lhassts | 30 | 41 | 311 | 60 | 10 | \#) | 90 | Jot | 110 | 120 |
| 4 (1) |  | 0.5 | 1.2 | 1.5 | 1.1 | 2.1 | 2.4 | 2.6 | 2.7 | $\pm 1$ | 3.5 |
| T\%* | 1'6' | 1.5 | t 3 | 32 | 3.1 | 14 | 5.1 | $5 . J$ | 6.4 | 3.1 | 75 |
| Ther | 7190 | 2.4 | 3.) | 4.6 | 3.5 | 45 | 3.4 | *. ${ }^{\text {c }}$ | 9.3 | 10.1 | 11.1 |
| Thwe | $3{ }^{\prime} 0^{\prime}$ | 2.1 | 3.8 | 4.1 | 1.7 | 6.7 | 3.6 | 36 | 9.5 | 10.5 | 11.4 |
| Four | 2'2>9' | 3.7 | 4.5 | 6.2 | 7. | 8.7 | $\$ .9$ | 11.1 | 17.4 | 13.4 | 11.8 |
| four | ₹ ${ }^{\text {co }}$ | 3.7 | 49 | 4.1 | 7.1 | $\pm .6$ | 9.8 | II. 1 | 17.3 | 135 | 14.7 |
| Faur | d'5' | 14 | \$1 | 6.1 | 73 | 9.0 | 10.3 | 11.5 | 12.1 | 14.1 | 15.4 |
| Five | +'5' | 47 | 6.1 | 1. ${ }^{\text {d }}$ | 97 | 109 | 12.5 | 14.0 | 15.6 | 17.1 | 11.3 |




overturning. To lower the girder in its final stage, place equalizer beam under top chord as in Figure 16-18. Place cribbing under the bottom chords or equalizer beam to prevent the girder from dropping if it slips off the jacks. If the distance to be lowered is great, lower the girder by successive stages. When truck-mounted cranes or gin poles are available at each end of the bridge, lower the girders directly on the bearings.



SKIDDING AND SQUARING UP After launching, move the girder into position by truck cranes, or skid it into position on greased skidding beams by prying with panel levers or pinchbars (Figure 19-13). Panelbridge stringers are preferred for skidding beams, but I-beams or timber beams may be used.

After the first girder is lined up with the existing bridge, square up the second girder with the first. If the trusses cannot be moved in a longitudinal direction without rollers, reinsert rollers after skidding.

## COMPLETION OF BRIDGE

For normal through-type assembly, complete the bridge bay by bay, working out from the near shore as follows:

1 Insert sway braces of first bay with adjusting collars on the same side of bridge. Use two lashings from centers of bottom brace to hold center of sway braces up until ends are pinned in place. Do not tighten.

2 Place transoms in first bay. A truckmounted crane with gin pole on far bank may be used to telegraph transoms into place, or they may be placed by hand. In the telegraph method, attach to the transom both a line from the gin pole on the far bank and a line from the crane on the near bank. Then pick up the transom and place it by taking up the gin-pole line and slacking off on the crane line. Use a tag line on the transom to guide it. When handling it manually, push the transom out from the bank and swing it into position with the aid of ropes attached to the top chords. The transoms are difficult
to fit at first, but this becomes easier as more bays are completed.

3 Place stringers in first bay.
4 Remove vertical bracing frames and insert rakers. Do not tighten.

5 Repeat above procedure to install sway braces, transoms, stringers, and rakers in second bay.

6 After bracing members are inserted in second bay, tighten all bracing in first bay and lay chess and ribbands in first bay.

7 Add remainder of decking in the same manner.

8 Install ramps.
Deck-type bridges take either standard panelbridge decking or expedient timber decking. For details of deck-type bridges, see Chapters 12 and 13 .

## CHAPTER 20

## BRIDGES ON BARGES

The panel bridge on barges consists of a standard panel bridge supported on floating piers made from river or coastal barges of suitable type and capacity. Special spans or parts are used to provide hinged joints between floating bays (Figure 20-1).

## PIERS

Piers consist of barges or vessels suitably prepared to support the panel-bridge superstructure. The several kinds of piers are-

- Floating-bay piers, which support the floating bays in the interior of the bridge.
- Landing-bay piers, which support the shore end of the floating bay and the riverward end of either the fixed-slope landing bay or the variable-slope landing bay.
- Intermediate landing-bay piers, which support the shore end of the fixed-slope landing bay and the riverward end of the variable-slope landing bay. The intermediate landing-bay pier is not used without the fixed-slope fanding bay.


Fisilir 20.] Aumetmelafhre of paned bridge on bargen

## BAYS

The span between two articulating points supported by two floating piers or between the shore and a floating pier is called a bay (Figure 20-2). The several-kinds of bays are-

- Floating bays, which are the interior of the bridge from the end floating bay on the near shore to the end floating bay on the far shore. They are supported near each end by floating-bay piers.
- End-floating bays, which form the continuation of the bridge between the floating bays and the landing bays. They are supported by a landing-bay pier and a floating-bay pier.
- Landing bays, which form the connection between the end floating bay and the bank. There are two types of landing bays: the variable-slope landing bay, which spans the gap between the bankseat and the landing-bay pier (or the intermediate landing-bay pier if a fixed slope landing bay is used); and the fixedslope landing bay, which, spans the gap between, the intermediate landing-bay pier and the landing-bay pier.


## SPECIAL SPANS

Special spans include connecting spans, lift spans; and draw spans. Connecting spans connect two adjacent floating bays where barges are grounded. They each provide two articulating points to compensate for the
changes in slope between the floating bays Lift spans (Figure 20-3) connect two adjacent floating bays. They can be lifted vertically by use of block and tackle or chain hoists to allow passage of water traffic through the bridge. Draw spans provide a wider gap between adjacent floating bays for passage of river traffic. They can be split in the middle and each half pivoted up.

## DESIGN AND

CAPACITIES OF BARGES Coastal and river barges differ widely in construction and capacity throughout the world. In Europe and the Americas, barges are generally flatbottomed. Barges with round or semiround keels are also found on European canals and rivers (Figure 20-4).

tïury :rth.j Paphel-bridef tiff span


## トrigure 20.4 Typiral Europent barget

Asiatic barges have less capacity than European or American barges. Generally, European and American barges have a capacity of from 80 to 600 tons ( 73 to 546 metric tons). The general condition of the barge has a direct effect on its use in a bridge.

## Ribs

Structural ribs of barges are designed for bending stresses induced by water pressure on the outside of the hull. They are normally bulb-angled steel sections $5 \frac{1}{2}$ to 7 inches ( 14 to 17.8 centimeters) deep, closely spaced, and curved rather than straight. Ribs should not be loaded as struts unless they are braced and load is distributed. To distribute the load, timber cribbing can be used along the gunwale directly over the ribs. If the rib is not curved and the length of rib from deck to keel does not exceed 10 feet ( 3.1 meters), each rib
will support approximately 5 tons (4.6 metric tons).

## Decks

Barge decks are designed for distributed loads. A wide variation of deck design exists and care must be taken in estimating their capacity. European flat-bottomed barges normally use transverse beams of Z section, 6 to 7 inches ( 15.3 to 17.8 centimeters) deep, carrying light channels or I-beams fore and aft to support a timber deck. A deck of this type can carry a bearing pressure of 0.5 ton (. 45 metric ton) per square foot.

## DESIGN OF SUPERSTRUCTURE

The superstructure of a bridge on barges may be assembled either by normal or by special means. Superstructures of normal bays consist of double-single, triple-single, double-
double, or triple-double assembly of standard panel-bridge equipment. Normally, a floating-bay superstructure is a single-story assembly and a landing-bay superstructure is a double-story assembly.

Decking for a superstructure of normal bays consists of standard chess with 3-inch (7.6 centimeters) wear treads laid diagonally over the chess. Add angle irons to deck on landing bay to increase traction. When connecting posts are used to connect floating bays, transoms and junction chess cannot be used to fill gap between bays. Place cut stringers on the two transoms at the end of each bay, and place two thicknesses of 3 - by 12 -inch (7.6 by 30.5 centimeters) planks spiked together on top of the cut stringers Figure 20-5, page 260). Wire planks in place to prevent shifting. When span junction posts are used to connect bays, fill gap between bays in normal manner, using transoms and junction chess. Where maximum road width is desired, ribbands can be eliminated by a 2 - by 24 -inch ( 5.1 by 61.1 centimeters) hub guard installed 6 inches (15.2 centimeters) above deck to protect panels.

Use special connecting posts to connect bays and provide articulation (Figure 20-6, page 260). These special connecting posts provide ample strength and allow development of full capacity of superstructure. Equal articulation above and below connecting pin provides unrestricted space for movement in the connection. Such connectors do not require restrictive linkages, guides, or maintenance. Combination special connecting posts can be

 gap belduet bara when bayn arz cunnected with gperthil tornhecting powit
used in place of normal posts and also to connect two male or two female ends of panels.

Use special spans when barges are grounded or when passage of water traffic through the bridge is necessary. The capacities of the special spans are the same as the normal spans. However, their full capacity cannot be developed unless the suspending connection at each end is made strong enough. In addition, the weight of the lift span and draw span is limited by the lifting power and strength of the hoists, thus affecting the type of construction that can be used in these


F FMALE-FEAMLE POST


GIDE YIEN FEAHLE.
COMBRHATION POST


MALE.

 CONNGCTILGPAST
SPECIU CONNEGTNG ODRT

 5PFCTM CONNFGTINE HOE1



M ALE. MALE POST

figure $2 \mathrm{t} \cdot 6$ Sipecial somenertite posto

 cownerting gpan between drulye baya
spans. The three types of special spans used are connecting spans, lift spans, and draw spans. They are used as follows:

- Use the connecting span when barges are grounded or when special connecting posts are not used. It is a short span of single-single or double-single assembly suspended between two floating bays by span junction posts (Figure 20-7).
- Use the lift span only in short bridges where current is slow and there are no longitudinal forces in the bridge. When current is swift, pier heights can be increased to arch the bridge enough to pass water traffic under one of the center spans without use of a lift span. The lift span is single-single or double-single
assembly 20 or 30 feet ( 6.1 or 9.4 meters) long. It is raised horizontally by block and tackle attached to span and to panel towers in adjacent bays.
- Use and restrictions of the draw span are the same as for the lift span. The draw span is a single-single or double-single assembly, usially 20 feet ( 6.1 meters) long (Figure 20-8 page 262). Hinge and suspend it to adjacent bays by span junction posts. Raise it at one end by block and tackle attached to span and a panel tower in one of the adjacent bays. If resulting gap is insufficient, use span of 40 feet (12.2 meters) and make cut at center of span. Then use towers with block and tackle at both ends and lift each half separately.


## DESIGN OF BAYS

The barges and the superstructure together form sections called bays. These are designed as either floating or landing bays.
Floating bays are normally double-single assembly. However, for loads of 100 tons ( 9.1 metric tons) or more, unsupported span lengths are limited to 60 feet ( 18.3 meters) and assembly must be triple-single. The class is limited by type of assembly, by the span between centers of barges, and by the method used to support the superstructure on the barges. The class of floating bays is given in Table 20-1 (page 263). Normally, a barge near each end of a bay supports the superstructure. The superstructure must not overhang the barge at each end more than 15 feet (4.6
meters) from the centerline of the barge. However, a single barge can be used if it has ample width and capacity and the bay is stable under the load.

The type of assembly used in landing bays depends on length of span and on loads to be carried. A triple-double assembly is the heaviest type used. Maximum slope of the bay is 1 to 10 with adequate traction devices provided; without traction devices, slope is 1 to 21. Length of landing bay depends on conditions near shore. Use double landing bays where considerable change in water level is expected or when high banks are encountered. Assemble landing bays the same as normal panel bridges and use the same type of end support.

## ADVANTAGES AND DISADVANTAGES

The panel bridge on barges has the following advantages:

- It does not use standard floats and pontons which may be needed at other sites.
- It allows long landing floating bays for use in tidal estuaries or rivers with high banks.
- It has large capacity barges which allow greater bridge capacity than standard military floating supports.
- It provides a stable bridge in swift currents.

- It minimizes hazards of floating debris and ice.

The bridge has the following disadvantages:

- It uses barges which may be hard to obtain.
- It can be used only in navigable streams or waterways used by barges or vessels of the type and size necessary for use in the piers.
- It is not adaptable in combat areas because of equipment, material, labor, and time requirements.



|  |  | LEMCIN Of bar ot \＄pan fit |  |  |  |  |  |  |  |  |  |  |  |  |  | 11 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 20 | 50 | 45 | 50 | ¢0 | T0 | ＊0 | 90 | 10ts | เ10่ | 120 | 130 | 140 | 150 |  |
| LAMDİG EAMY | 55 |  | 10 | 51 | 21 | 徝 | H | 1\＄ | 13 | 10 |  |  |  |  |  |  |
|  | 0 C |  | 161 | g | 5 | 51 | 54 | 31 | 11 | 31 | 21 | 18 | 11 | 101 |  |  |
|  | 15 |  |  |  | 11］ | d． 6 | BE | 10 | 62 | 52 | 40 | 14 | $7 \overline{3}$ | 18 | 13 |  |
|  | 60 |  |  |  |  |  |  | 13） | \％ | 75 | 44 | 50 | dín | 11 | 11 |  |
|  | 50 |  |  |  |  |  |  |  | 106 | 91 | tib | 70 | 35 | d | 49 |  |
|  | Of |  |  |  |  |  |  |  |  |  | 105 | 43 | 60． | 57 | 45 |  |
|  | 11 |  |  |  |  |  |  |  |  |  |  |  |  | 105 | 93 |  |
| $\begin{gathered} \text { EMD FLOANMG } \\ \text { BNY } \end{gathered}$ | 35 |  |  |  | 16 | 30 | 26 | 27 | 11 | 15 | II |  |  |  |  |  |
|  | 如 |  |  |  | 100 | 16 | 71 | 62 | $\$ 2$ | 4 | 15 | 27 | 29 | 15 | 11 |  |
|  | 15 |  |  |  |  |  | 105 | 94 | 81 | 4 | 56 | 45 | 35 | 77 | 20 |  |
| Flothing bir | 55 |  |  |  |  | 40 | 12 | 28 | 24 | 20 | 17 | I］ | 10 |  |  |  |
|  | DS |  |  |  |  | 107 | 的 | d5 | 63 | $3)$ | 4 | 410 | 11 | 25 | $1 \pm$ |  |
|  | T5 |  |  |  |  |  |  | 113 | 100 | 3 | 75 | 62 | 54 | 40 | \＄ |  |
| COnmECTH\＆引蚿 | 55 | 2 | 74 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 0 | 眎 | 67 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Is | 113 | 109 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| LIFI SPAM | 55 | 28 | 24 |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | ［S＇ | 70 | $5 \cdot$ |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 15 | 11］ | 100 |  |  |  |  |  |  |  |  |  |  |  |  |  |
| D日边 SPAM | \＄ | 11 | 24 | 20 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | D5 | H0 | 6.7 | 5 |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 15 | 113 | 108 | H |  |  |  |  |  |  |  |  |  |  |  |  |

## BARGE EQUIPMENT

Barges must be processed and their required equipment determined．Procure barges locally and then examine and rate them for capacity； determine the best point for use in the bridge； establish the type of barge loading（described later in this chapter）to be used；and sketch the construction needed to bring the bearings to exactly the elevation established for super－ structure bearings．

After determining the type of barge loading． prepare a material estimate and an an equip－ ment requirement list for each barge．Nor－ mally，steel beams，timber，blocking，wire rope，and miscellaneous bolts and fittings are needed．See Chapter 17 for equipment re－ quired if panel crib piers are used as supports on the barges．

## PARTS FOR SUPERSTRUCTURE

Normal spans use fixed－span panel－bridge parts（Chapter 1）．Connections between spans are made with special connecting posts that must be fabricated in the field Figure 20－6）or by connecting spans using span junction posts supplied in the panel crib pier set （Chapter 17）．

Special fittings to guide both the lift span and the draw span during raising and lowering must be made in the field．Block and tackle required are supplied in the freed－panel bridge set．Counterweights to aid in raising and lowering the span can be improvised．The lift span or the draw span，and the floating bays， are connected by span junction posts from the panel crib pier set．
The normal erection equipment supplied in the fixed－panel bridge set is sufficient to assemble the superstructure．Truck cranes aid the erection of the superstructure and the preparation of the barges．Acetylene torches， arc welders，chain falls，power and hand winches，diving equipment，and sea mules or power tugs with enough power to move floating bays into position should be avail－ able at the site．

## SITE SELECTION

Tactical requirements determine the general area within which a site must be selected．The following factors should be carefully con－ sidered in choosing the site：
－There should be a road net close to the site over which equipment can be moved．

Roads and approaches should require as little preparation and construction as possible and should be straight and level for at least 150 feet ( 45.7 meters) before reaching the stream bank.

- Near-shore area should afford suitable sites along the shore for barge preparation and bay assembly.
- Banks should be reasonably steep and firm so that water gap will not change materially with water level. Banks high enough to allow launching of superstructure to barge piers are desirable.
- The site should be on a straight reach of the stream or estuary and free from cross currents that would exert a longitudinal force on the bridge. Water at bridge site should be deep enough to float barges at low water if no barges are to be grounded. Water at assembly sites should be deep enough to allow preparation of barges close to shore and launching of superstructure directly to barges. If barges can be grounded at low water, the stream bottom should be reasonably smooth and level. The stream should be free of obstruction at the assembly sites and bridge site.


## SITE RECONNAISSANCE

After the general area has been determined, make a study of aerial and terrain maps to determine possible bridge sites along the stream within the specified area.

Direct aerial reconnaissance generally gives the following information on these bridge sites:

- Site relation to existing road net, with estimate of road construction required.
- Alignment of river at site and channel obstruction in the vicinity.
- Approximate height of banks to decide suitability for approaches and landing bays.
- Approximate width, shore to shore, of river, and length of bridge required.
- Location, relative to bridge site, of material storage, equipment, and work areas, and of barge site next to near shore for floating-bay assembly.
- Location of barges large enough to be examined later in detail by ground reconnaissance.
- Nature of open water route from barges to bridge site, noting and locating obstructions to navigation.
- Routes over existing road nets for transportation of bridge materials from dump or other sources to bridge site.
- Location of adjacent quarries and aggregate supplies.

Ground reconnaissance gives the following data:

- Width of river from bank to bank.
- Profile of approaches and streambed.
- Character of soil in approaches, banks, and streambed.
- Profiles of possible routes of approach and linking roads to existing road nets.
- Current velocity.
- High and low water data indicated on profile and rate of flood and ebb of tide, if possible.
- Sketch showing location and description of suitable material storage and work areas, downstream assembly area with profiles at possible shore barge preparation sites, and floating-span erection sites.
- Sketch of barges located in aerial reconnaissance.
- Routing on open water from assembly sites to bridge site, with description and location of obstacles and estimate of work necessary to clear passage
- Information on location, quality, and quantity of nearest aggregate source.


## SITE LAYOUT AND PREPARATION

 Before actual construction, alignment and grade of roads and approaches must be determined. Plan and locate storage and assembly areas so as to ensure uninterrupted progression of work and avoid unnecessary handling. After determining location and layout of site, complete road work and approaches to expedite delivery of bridge material. At the same time, prepare landingbay and floating-bay assembly areas.
## WORKING PARTIES

To build bridges of 500 feet (152.4 meters) or more, assign an engineer combat or construction group of three battalions, two panel bridge companies, one light equipment company, and one harbor craft company. For shorter bridges, reductions in personnel can be made. Table 20-2 presents a suggested breakdown of tasks and troops required for constructing an 810 -foot ( 246.9 meters) class 70 bridge in a moderate current. Approach road construction will need five company days.

Tabir $20 . \dot{y}$ Tanke breakitown of permonnel buildis.
区n S10-foot $\mathbf{f} \mathbf{2} 46.9$ meterth ciam 70 bridge


An example of how to distribute work parties is-

Assume bridge will consist of the following bays, proceeding from near to far bank:

One 100-foot ( 30.4 meters) double-double variable-slope landing bay.
One 100-foot ( 30.4 meters) double-double fixed-slope landing bay.
One 80 -foot ( 24.4 meters) triple-single end floating bay.
One 40-foot (12.2 meters) double-single draw span.
Three 100 -foot ( 30.4 meters) triple-single floating bays.
One 90 -foot ( 27.4 meters) triple-single end floating bay.
One 100-foot (30.4 meters) double-double landing bay.

## Assume an engineer group of: <br> 3 battalions.

2 panel bridge companies.
1 light equipment company.
1 harbor craft company.
One possible assignment of units to construct this bridge is as follows:

One battalion to construct:
One 100-foot ( 30.4 meters) doubledouble variable-slope landing bay.
One 100 -foot ( 30.4 meters) doubledouble fixed-slope landing bay.
One 80-foot ( 24.4 meters) triple-single end floating bay.
One 100-foot ( 30.4 meters) triple-single floating bay.

One battalion to construct:
One 100-foot ( 30.4 meters) doubledouble landing bay.
One 90 -foot ( 27.4 meters) triple-single end floating bay.
One 40-foot ( 12.2 meters) double-single draw span.
Two 100-foot ( 30.4 meters) triple-single floating bays.

One battalion to:
Prepare approach roads.
Unload equipment.
Prepare anchorages.
Two panel bridge companies to: Haul bridge equipment.

One harbor craft company to:
Assist in maneuvering barges and bays.

One light equipment company to:
Supply construction equipment with operators.

Time required for completion is approximately 6 days of daylight construction.

## BARGE SELECTION

Before starting to build the bridge, barges must be chosen and positioned with care. In selecting barges, structural condition, capacity, shape, freeboard, type, and location of barge must all be considered. Examine and rate barges located on the reconnaissance. Barges which meet the requirements should be assigned a position in the bridge. Working
sketches and a plan of preparation for each barge are necessary to adapt it for use as a floating pier．Clear nonusable，easily un－ loaded material from the selected barges to help towing to barge preparation sites．

## METHODS OF LOADING

Barges are adapted for use as piers by three methods．The method employed depends on the type of barge，flat－bottomed or keeled，and grounding conditions．The three methods of loading are gunwale loading，crib loading， and grillage loading．

## Gunwale loading

As few barges are designed for gunwale loading，determine the strength of the barge ribs before using this method．Barges are normally built with a narrow deck running full length along each side of the hold．This deck space can be used for gunwale loading if the ribs and the deck are strong enough and the load is applied as nearly as possible over the ribs．Gunwale loading must not be applied to barges that will ground at low water unless the barge and the bay will remain level．If keel－type barges are used，the site of grounding should be in soft mud．Flat－ bottomed barges should ground on flat sandy bed free from obstructions．

Use packing between the gunwale and the superstructure to distribute the load．The deck is normally cantilevered from the ribs and considerable load is placed on the ribs when the deck is loaded．The deck will probably have to be supported by struts from the barge floor to the edge of the deck or by



## 

packing the gunwales. The load on the gunwale can also be reduced by using a reinforcing bent built up from the floor in the center of the barge. Barges with curved ribs must be braced by rods between the gunwales or by struts from the reinforcing bent (Figures 20-9 and 20-10). If ribs are not curved and the length of rib from deck to keel does not exceed 10 feet, reinforcing of ribs is unnecessary.

Crib loading
Cribs made of panel-crib parts (Chapter 17) can be used to support the superstructure on the barge if the barge is unsuitable for gunwale loading or uneven grounding occurs

Barge floors are designed to carry distributed loads, and grillage must be used under the cribs to ensure adequate distribution of the load. Crib loading requires more time for construction than gunwale loading but crib loading distributes the load to the floor of the barge, which is able to carry more load than the gunwales. Take special care to observe the behavior of cribs when the bridge is first loaded and during tidal changes. Mark the position of bearings so that movements can be determined. If careful observations are made, adjustments can be made in time to prevent serious movements and avoid the difficulty of repositioning barges and cor-
recting misalignment of superstructurs. Secure anchorage of cribs prevents most of this difficulty.
There are two types of cribs: fixed, and rocking. Fixed cribs are used in both flatbottomed and keeled barges that do not ground during low water. Use them also in keeled barges that ground during low water to prevent the barge from tipping. Connect fixed cribs rigidly to both the superstructure and the barge floor and guy both laterally and longitudinally to the gunwale. Details of assembly and methods of attaching the cribs to the superstructure and the barge floor are similar to those given in Chapter 17. Rocking cribs are used in flat-bottomed barges when uneven grounding occurs. Details of assembly and methods of making the rocking connections are given in Chapter 17. Clearance between the crib and the gunwale must be enough to permit the full articulation required. Determine the required clearance from the slope of the stream bottom where the grounding occurs. Guy rocking cribs fore and aft on the centerline of the barge as an added safeguard against movement. An expedient rocking crib is shown in Figures 20-11 and $20-12$ (page 268). The crib is made to rock by removing one of the panel pins in the crib bearing before the barge has grounded.

## Grillage loading

Use grillage loading when the barge is unsuitable for gunwale loading and the panel crib pier parts are unavailable. Build up grillages from the floor of the barge with steel or timber beams (Figure 20-13). When using


1 CAIE EEARINL
2 TILTEO AFTER GROUNDINA
3 TIMGER STRUT RE MDVED
4 CRIE CAPG1LL


SECTIEN A-A

```
1 CHIS CAPSILL
2 TINBER USED IQ DLSTRIEUTE LOAD
3 CRIG ECARIMG
CRGEEARIMG
FOQT
```

5 TIMBER STRUT
6 TRANSOMS
T FWiA GRMC.E



weld base plates to the piers, and standard bearings to the plates, to support end posts.

Floating-bay piers are prepared similar to the landing-bay piers. Pair barges so those used in any pier have about the same freeboard. When the barges in the floating-bay piers have different freeboards, crib up the superstructure seats to the elevation of the superstructure seat on the barge with the greatest freeboard.

## LANDING-BAY ASSEMBLY AND LAUNCHING

Use normal assembly methods given in Chapter 6 for assembling landing bays. Long spans are normally launched undecked.

Where the piers can be moved close to the bank, launch landing bays over rollers on the bank to the pier. Use the skeleton tail method (Chapter 18) where bank conditions prevent moving barges in close.


Fugure 2014 Froppration of internediatc landing-bay pier
Where double landing bays are required, launch them as a continuous span, separately, or by use of construction barges, as follows:

- Assemble the two bays as a continuous span on the centerline of the bridge abutment. Launch this span over rollers placed on intermediate landing-bay pier onto cribbing on the landing-bay pier. Break the top chord over the intermediate pier by removing pins, and then jack the river end into final position. Remove bottom pins and pull back the variableslope bay to permit installation of end fittings on the intermediate pier for both bays. Place abutment fittings in usual manner.
- When launching separately, launch the fixed-slope bay as described earlier, but place rollers on the intermediate pier

 pupf of cratiable landing bay
instead of on the bank. Then launch the variable-slope bay.
- The fixed-slope bay can be assembled off site and launched to position on the intermediate floating-bay pier and a construction barge. Float the bay thus formed into position and connect to the end floating bay. Remove the construction barge. Then launch the variable-slope bay.


## FLOATING-BAY ASSEMBLY AND LAUNCHING

Use methods given in Chapter 6 for assembling floating bays. Several methods of launching floating bays are as follows:

- Where barges can be placed close to the bank, launch the span over rollers on the bank to the off-bank barge. Then push out barge, permitting in-bank barge to be
positioned, and jack down the span into place on the in-bank barge. A construction barge can be placed adjacent to shore to use jacks on. This should have a lower freeboard than other barges.
- Where bank conditions permit, moor both barges side by side and launch the span over rollers on the in-bank barge to a position on the off-bank barge. Then jack down the span into position on the inbank barge.
- When barges have wide beams, assemble sections of the bridge on each barge and then join to form bays; for long bays, partly flood surplus barges and float from under the superstructure.
- Cranes can place bridge equipment on barges, where it can be assembled on rollers. Spread barges to obtain proper bay length as superstructure is assembled.


## CONNECTING BRIDGE SECTIONS

Bridge sections are linked by landing and floating bays. Landing bays have either special connecting posts or standard end posts, as follows:

- Special connecting posts are desirable for connecting all bays. The articulation provided is normally ample under all conditions. When both a fixed-slope landing bay and variable-slope landing bay are required, the special connecting post on the river end of the variableslope landing bays have bearing blocks
welded to the bottom. The posts are seated on bearings welded to base plates which are welded to the intermediate landingbay pier grillage.

Fix the shore end of the variable-slope landing bay with standard end posts mounted on bearings welded to base plates. The base plates rest on rollers set in an expedient box plate (Figure 20-16). This provides for lengthening and contraction of the bridge during changes in water level. The river and shore ends of the fixed-slope landing bay are suspended by treadway pins in the special connecting post.

- Where special connecting posts are not available for connecting landing bays, the bays can be seated on standard end posts on bearings. Rest the end posts on adjacent ends of variable-slope and fixedslope landing bays on bearings welded to base plates mounted on the intermediate landing-bay pier grillage. Seat the river end of the fixed-slope landing bay on standard end-post bearings resting on base plates welded to the end floating-bay pier. Mount the shore end of the variableslope landing bay as described for special connection posts.

Details of floating bay connection are as follows:

- Connection of floating bays is made easier by carefully constructing each bay to the same elevation. A ballast of water can be
loaded for adjusting freeboard of the bay. A vehicle on the bay to be connected can be moved to aid in aligning connecting pinholes.
- Considerable tug power is required to move and handle bays into connecting position. Use both towing and pusher tugs to provide adequate control of the bays and prevent damage. Floating bays over 100 feet ( 30.5 meters) long are hard to tow and control.
- In connecting bays fitted with special connecting posts, it may be necessary to jack truss into place to get enough pinhole alignment for treadway pin.
- Carefully estimate maximum articulation and movement of junctions between bays during grounding. Too much articulation will cause undesirable changes of slope in the decking and may cause tilting or lifting of stringers or chess. If such a condition develops at grounding, minimize junction articulation by use of a connecting span between bays.


## CONNECTING SPANS

Connecting spans are normally 20 to 30 feet ( 6.1 to 9.1 meters) long. Assemble each connecting span directly on a single construction barge at a correct elevation for connection in the bridge. Install proper male and female connecting posts at span ends to connect and suspend the span to girders of the adjacent bays in the bridge.


PGAN WIEW


SECTLOMA.A

21" BOILER PLATE
3 FRAME FILLEO WHTH GREASE TO COVER TREAOWHY PINS
4 EASE PLATE

6 M2 TREADWYAY PHN5 U5FD A5 RDLLERS
TLAG SCREW
8) Bearinc

## LIFT SPANS

The lift span (Figures 20-3 an 20-17 pages 258 and 272) is normally assembled on a construction barge at a correct elevation for connection in the bridge. Determine length and lift of span by the beam and clearance of vessels to be passed through the bridge. To lift the span, build panel towers on the ends of adjacent floating bays. Install suitable connectors, guides, and lifting and counterbalancing devices on the towers for control and lifting of the lift span; install girders of adjacent floating bays for connection when span is lowered and in position to receive vehicular bridge traffic. Floating bays sup-

## 

porting the lift span must be designed to ensure a level bridge.

## DRAW SPANS

The length of the span is determined by the beam of the vessels to be passed. Build towers on adjacent floating bays similar to lift span towers. Methods of building draw spans are as follows:

- Draw spans can be assembled on a construction barge to the correct elevation, and then moved and connected into the bridge.
- One-half the draw span can be added to each adjacent floating bay after tower erection at the bay-assembly site. The two floating bays can then be connected into the bridge, and the draw-span halves can then be connected.
- Draw spans can be built by assembly of single girders on the deck of adjacent spans. These girders can be launched by using tackle from towers to support free ends. Pin girders to bays and then deck them.




## CONNECTING SPECIAL SPANS

When used to connect grounded bridge bays with special connecting posts, no special devices or maintenance is required after a connecting span is connected and suspended from girders of adjacent bay ends.

Connect a lift span to supporting adjacent bays by special connecting posts or span junction posts when positioned and pinned for vehicular bridge traffic. Provide a vertical guide system on the tower to control longitudinal movement of span during lifting of


Hisura 20. J6 Panefidomprand lift apan côthentad and binkedf for hridge traffic
span to ensure proper pinhole alignment for reinsertion of connecting pins upon lowering (Figure 20-18).

Use the following procedure to connect a draw span:
1 Connect draw span to its adjacent floating girders with a suspension link or hinge mechanism. The link consists of span junction posts.


I WEST BANE LINE
2 DEADNAAN
3 GUY LINES.
4 SUNKEN FARGES
5 SO-GALLGN DAUM TO BE USEDASA AUOVATTALHED AMCHDR LINE 1SO GFOM SUMWEN HAREE

7 EAST 自ANK LINE

9 CO GEALMA 4 N
10 Dugcomal cables Fiom ecw To stern of BARGES OF EACH 6AY
If GUY LINES ATJAGHED TO CONNECTING PDST

## 

2 Arrange the decking to allow for movement across junctions. Cut stringers as shown in Figure 20-8, with one end lashed down to the end transom of draw span.

3 Install a pair of span junction posts at the center of the draw span to ease procedure.

The pins are readily removed when the weight of the draw span is taken on the tower tackles. In lifting draw span halves, raise one side until jaws are clear. Then lever panels sideways, if required, to allow simultaneous raising of the span halves without fouling.

## ANCHORS AND ANCHOR LINES

 The bridge is secured by anchors and guy lines (Figures 20-19 through 20-21, page 274) against the effects of wind and current.To determine needed types of anchors, examine the stream bottom and compute the expected pull on anchor lines due to these conditions. Barges loaded with stone or metal can be sunk upstream of bridge to serve as anchors.

Anchor line pull equals the sum of pull due to effect of current on submerged portion of barge and effect of wind on exposed portion of barge and superstructure. The following formulas may be used to determine this pull:

Pull due to current:

## Where

$P_{1}=A_{1} V^{*} P_{1}$
= pull in pounds
$A_{1}=$ vertical croas section ares below waterline at bean of barge in square feet
$v=$ velacity of currem in feet per aecond

## Pull due to wind:

On barge:

## Where

$\mathrm{F}_{2}=2 \mathrm{~A}_{\mathrm{i}} \mathrm{P}_{2}$
$=$ puil in pounds
$A_{c}=$ vertical cross bection ureu abouve waterline at tenm of large in square fect




1 LONGITUDINAL TIE CABLES OUEA TOP OF TONERS
$>$ TO DEAOHANAN
3 5UNKEM BARGES
4 LONGITVDNMAL TEE CABLES
S FA官TEN CAELE TOTOP CHOATC OF 日RIDGE

p = pressure ppounds per aquare foot) for appropriate wind velocity in Table 203
On superstructure:

## Where

$P_{3}=2000$

$P_{+}$a poll in pounds
$\mathrm{L}=$ lencth in feet of superstructure of a particular type (Table 2033)
$\mathbf{p}=$ pressure (tons per 10 food length) for a particular type euperstructure, at an appropriate wind velocity (Table 201-3)

The pull due to current and wind is computed based on maximum expected conditions. Anchor lines should pull parallel to current.

Winches should be placed on barges to adjust tension in anchor lines.


## GUY LINES

Use guy lines to anchor landing-bay piers to the riverbank. Place these lines at about a 45-degree angle to the bridge centerline. Longitudinal tie cables from stern to stern and bow to bow of each barge help to keep bridge aligned and to prevent longitudinal movement of parts of the bridge.

Special spans need modification of the anchor and guy system, as shown in Figures 20-20 and $20-21$. In the lift span and draw span, the longitudinal tie cables must be broken to allow passage of river traffic. In lift spans, extra cables can be strung over the top of the towers to tie the bridge together over the gap. In draw spans, extra anchor barges may be sunk at each side of the gap to prevent the bridge from shifting when the span is open.

## ANCHORAGE OF

## GROUNDING BARGES

Grounding barges may slide downhill, which can cause the landing bay to slide and dislodge the base plate and its bearings. Such slides can be avoided as follows:

- A barge which tends to slide down the bank when grounded must be suitably anchored to shore. Cables fastened to the bank can be passed under the barge to a connection on the off-bank gunwale of the barge. Use packings to prevent damage to the barge chines by the cables.
- When a barge slides on grounding, the resulting shift in the superstructure may cause the landing bay to slide beyond the limits allowed for bearings in the base plates. Rig tackle to prevent further movement until the bearings and base plates are reinstalled and secured in proper position.


## MAINTENANCE DETAIL

Bridges on barges require round-the-clock maintenance arrangements. A detail of about one engineer combat company is needed to maintain an 800 -foot ( 243.8 meters) panel bridge on a 24 -hour-a-day basis. Normally, two squads each shift are enough to tighten bolts, check anchor cables, repair decking, and maintain adequate bridge signs. This leaves three squads to maintain approach roads, perform any major repairs, and man fireboat and standby tugs.

A duty officer should be at the bridge 24 hours a day. The officer must ensure that the following regulations are in force at all times:

* Communication is maintained between the ends of the bridge.
- A wrecker is on call to remove disabled vehicles from the bridge.
- Guides having thorough knowledge of standard hand signals are available to guide minimum-clearance vehicles across the bridge.
- Alignment of the bridge is constantly maintained.
- Tension in all anchor cables is kept uniform.
- Buffers are maintained between all anchor and guy cables that rub against metal.
- All cable connections are inspected every 12 hours.
- All pins, bolts, and clamps are inspected every 24 hours.
- All barges are inspected and bailed at least once every 24 hours.
- All base plates are inspected once every 24 hours.
- A source of electrical power is available for operation of trouble lights and tools.
- Immediate approach roads are maintained.
- All signs in the vicinity of the bridge are maintained.
- Traction strips and decking are maintained. All nailheads must be kept flush with surface.
- Tugs are stationed upstream and downstream at the bridge.
- A fireboat is available.


## USE OF RAFTS

Multiple-lane rafts can be assembled from panel-bridge equipment supported on barges. Because of their ample freeboard and stability, such rafts can be used either as trail or as free ferries in swift currents and rough water.

## Assembly

Normally, the raft superstructure is doublesingle or triple-single assembly. Details of assembly and launching, and of barge preparation, are given elsewhere in this chapter.

A typical barge raft used successfully is shown in Figure 20-22. This raft has a threecarriageway superstructure of four doublesingle girders 90 feet ( 27.4 meters) long on two 100 -ton ( 91 metric tons) capacity Thamestype barges. This raft accommodates 12 vehicles having a combined weight of 120 tons ( 109.2 metric tons).

Inset position of barges in the raft as shown ir Figure 20-22 is necessary, except in cases where the raft will be used in smooth water; otherwise, if the barges are placed near the ends of the raft in rough water, there is excessive stress in the connections between the barges and superstructure.

When the raft is towed in heavy seas, the decks may become awash, causing complete bays of decking to lift off the barges. To prevent this, use stringer clamps.

The superstructure must be secured to the barge to prevent fore-and-aft movement. Sway braces can be used for this purpose by fixing one end of the brace to a barge deck bollard or cleat and attaching the other end to a deck transom by means of two tie plates. The brace can then be tightened in the normal manner.

Use quays or docks to facilitate assembly and operation of a raft. It is preferable to operate between quays or docks of proper height for convenience in loading and unloading the raft. Where such site conditions exist, the height of the raft deck can be adjusted, within limits, by packing the superstructure girders up on cribs or by building a deck-type rather than a through-type raft. If quays or docks are unavailable, build ramps.

## Operation

For continuous use of the raft as a ferry, install an upstream cable. Run bridle lines to winches mounted on the barges, allowing the raft to be swung at suitable angles to the current, and operate as a trail ferry.

When the raft is being grounded, the barges may assume different angles of slope. To relieve the superstructure of stresses, remove either all top or all bottom pins at the centerpanel connections of the raft. This allows the two halves of the raft to articulate and conform to the lay of each barge. Close observation is required as the tide falls to determine whether the top or bottom pins are to be removed, and also the proper time to remove them.


Figure 20.22 Typical batgo raft

## CHAPTER 21

## BRIDGE MAINTENANCE AND REPAIR

This chapter tells how to handle and store panel-bridge parts and equipment. It also tells how to repair damaged Bailey bridges, as well as how to dismantle and to replace them.

## CARE OF PARTS AND EQUIPMENT

 When storing and transporting panel-bridge parts, keep them clean and handle them as follows:- For panels, grease jaws and inside of all holes. Panels are easily distorted by improper storage and handling. Whenever possible, store them in upright position resting on the long side. If it is necessary to store them horizontally for stability, do not stack more than 10 on a flat base. Stack on timber cribbing rather than on the ground.
- For bracing frame, rakers, and tie plates, grease conical dowels.
- For end posts, grease curved bearing surfaces and pinholes.
- For bearings, grease bar segments.
- For panel pins, grease shanks.
- For sway braces, grease threads and pins.
- For bolts, grease entire bolt.

Protect pieces of erection equipment, such as rollers, jacks, panel levers, pin extractors, and wrenches, by keeping them clean and lubricated to prevent rust.

Before launching abridge, lubricate bearings of plain and rocking rollers through grease fittings at both ends of shafts. Lubricate plain rollers as follows:

1 Clean out old grease and dirt around shaft at each end of both rollers.

2 Wedge rollers tight against outer bearings where grease fittings are located.

3 Add grease until it is forced out around shaft at inner bearings.

4 If no grease appears at inner bearing of either roller, disassemble and clean entire unit.

5 After reassembling the roller, repeat the second and third steps above.

## BRIDGE MAINTENANCE DETAIL

For important bridges subject to enemy action, the maintenance party usually consists of the entire assembly crew. For routine repair work, however, the detail consists of only six soldiers. In rear areas, one traveling crew maintains all bridges in an assigned area or route. The maintenance detail-

- Checks bridge thoroughly after first 30 minutes of use and periodically thereafter for tightness of bracing bolts, chord bolts, transom clamps, and sway braces.
- Examines base plates and grillages periodically for uneven settlement and adds grill age when necessary.
- Checks tightness of cribbing under end transoms and ramps.
- Makes sure all panel-bridge pin retainers are in place.
- Lubricates all exposed threads and occasionally pours a small quantity of oil over each panel joint if the bridge is to remain in place for a long period or if it is to be dismantled in freezing weather.
- Repairs wearing surface on deck and ramps, and keeps stone and gravel off deck.
- Maintains immediate approaches and ditches.
- During heavy rainstorms, checks closely for erosion of bank seats, abutments, approaches, and drainage ditches.
- Replaces damaged end-post guards.

| T0¢LS | QLANTITY NEEDED |
| :---: | :---: |
|  <br>  | I |
| Chandi lextil. $1^{40}$ | $t$ |
|  | $z$ |
|  | 1 |
| Wraclum Mor | 1 |
| (4xal Mrow | ] |
| Cwptakn's l\%ap\| | 1 |
| Mund quskut [0] | 1 |
| \$latp, 6-b | J |
| Showel. lowidertind | 1 |

Tools for routine maintenance work are listed in Table 21-1.

## SPARE BRIDGE PARTS

Bridge supplies include about 10 to 25 percent spares for all bridge and nose parts except bearings, ramp pedestals, pickets, base plates, ramps, and ribbands. For replacing damaged parts of bridges subject to enemy fire, the spare parts in the bridge supply and additional parts covering the above exceptions are dispersed about the bridge site after completion of the bridge. Depending on the tactical situation, the spares may be increased up to 50 percent for forward-area bridges. Rear-area bridges require only enough spare deck parts and wear-tread planking to replace those worn or damaged by normal use.
For bridges subject to enemy action, complete erection equipment must be kept available at the site.

## ASSESSMENT OF DAMAGE

The class of damaged bridge is found by comparing the residual strength of a damaged member with the actual maximum stress it must take according to its position in the bridge. Unit assembly of the panel bridge produces girders of uniform section throughout their entire length. Many individual panel members are therefore not stressed to full capacity when the bridge is under maximum load. Only chords of the center bays and vertical and diagonal members of the end bays are fully stressed. Any damage to these members decreases the bridge class in direct proportion. Lightly stressed verticals and diagonals of the center bays, and chords of the end bays, can sustain considerable damage without affecting the bridge class.

Since they can easily be replaced, the effect of damage to deck, transoms, sway braces, rakers, and bracing frames is not considered here.

## RESIDUAL STRENGTH OF

## DAMAGED PANEL MEMBERS

Table 21-4 (page 280) gives the residual strength of panel vertical and diagonal members expressed as percent maximum capacity of the complete cross section. The figures apply to both tension and compression members.

Residual strength of damaged panel chords is given in Table 21-3 (page 268). The two channels of a panel chord act as one member. Damage to one channel is indicated in the left column of the table and damage to the other channel is shown in the top row. Combined
result of damage to the two channels expressed as a percentage of the strength of the undamaged chord is found at the intersection of the appropriate column and row. In Tables 21-2 and 21-3] darkened portion indicates damage. When length of damage exceeds 15 inches, values must be reduced to 0 .

## SHEAR AND MOMENT <br> DISTRIBUTION

To simplify calculations, shear and moment in single-story bridges are assumed to be taken equally by all trusses. Shear in a double-story bridge is taken equally by both stories except in end bays, where the bottom story takes 60 percent of the total shear. Top and bottom chords of double-story bridges provide all resistance to bending. Damage to intermediate chords can be disregarded if it does not reduce shear capacity of web-member connections.

Shear in a triple-story bridge is taken equally by all three stories except in end bays, as follows:

- Only bottom and middle stories resist shear when deck is in the bottom story.
- Only middle and top stories resist shear when deck is in the middle story.

Stress in top and bottom chords of triplestory bridges is about three times that in intermediate chords. However, to simplify calculations, it can be assumed that top and bottom chords provide all bending resistance.




Damage to intermediate chords causing loss of chord capacity up to 50 percent need not be considered, but cases of more extensive damage should be investigated and correlated with any damage in top or bottom chords of the same bay.

## SHEAR AND MOMENT TABLE

Table A-16, Appendix A, gives maximum shear and bending moment in each bay of all spans of fixed-panel bridges expressed as percentages of maximum capacity. Deadload shear and moment values (DL) show percentage of shear and moment capacity of each bay required to support dead weight of the bridge itself. Live-load values (LL) show percentage of shear and moment capacity of each bay required to support a tank load of the weight class of the bridge. Tank loads are placed at maximum eccentricity against one curb, increased 10 percent for impact, and moved along bridge to point of maximum effect for each bay.
 enpacily of furd esection


EVALUATION OF DAMAGE
The two main girders of a bridge are independent of each other and each must be capable of taking at least half the total bridge loads. If one girder is damaged it cannot be helped by any reserve capacity of the other.

## Chords

The members at a given section of a bridge which have an identical function and act together must be considered as a unit. For example, each main girder of a triple-double bridge consists of three trusses. If a chord of one truss is completely severed, the remaining undamaged construction of that girder is double-double and capacity of the bridge is that of a double-double bridge of the same span. Moreover, if the damaged truss is incapable of supporting itself, the doubledouble capacity must be further reduced by half the weight in tons of the damaged truss. If the chord in one panel of a single-single bridge is completely severed, the capacity of the girder and bridge is reduced to zero.

## Web members

Effects of damage to diagonals and verticals depend partly on the condition of adjacent members. When both diagonals at a vertical section of a panel are seriously damaged, shear strength of the panel at that section is reduced to 30 percent because shear is resisted only by bending in the chords. Any damage to the chords or other diagonals in the same half of the panel reduces the shear strength to zero. When one of the diagonals at a vertical section is completely severed, panel shear strength at the section is reduced to 50 percent. Each diagonal takes half the shear, one
in compression and the other in tension. Residual shear capacities of panels with damaged verticals in percent of undamaged capacity are shown in Table 21-4.



## Deformed members

When a member struck by flying metal is deformed and not severed, it must be watched as loads pass over the bridge. If further deformation takes place, it must be treated as if it were severed.

## EXAMPLE: <br> Given:

A 90-foot ( 27.4 meters) span, class 40 double-single bridge damaged as follows:

Case 1. In the third bay from one end, a flange of one channel in the bottom chord of one truss is missing

Case 2. In the second bay from the end, a flange of one diagonal channel is severed.

Case 3. In the end bay, the center vertical of one panel is completely severed.

## Required: <br> What is the load class of the damaged bridge without repair or reinforcement?

## Solution:

Case 1. From Table 21-3 the residual strength of the damaged chord is 60 percent. As there are two trusses, the residual strength of the girder is-

From Table A-16, Appendix A, bending stresses in the third bay are-

```
Thead load = 22
Live load a 67
 Total: 89 peremat
```

The damaged girder section is capable of taking on 80 percent of its original capacity. Therefore, the rated bridge capacity must be lowered to reduce stresses at this section from 89 to 80 percent. Dead load remains the same. Therefore, live load must be reduced by 9 percent.

```
Live toad = 67.9
 =56 percent
```

Reduction in live load is approximately proportional to the lowering of the load class.

## New ioad class $=40 \times \frac{68}{68}$ <br> ع 34.6

Case 2. From Table 21-2, residual strength of the diagonal with one flange severed is 25 percent.

Reaidagl atrength in panel<br>$=25+100$<br>2<br>$=62.5$ percent

## Residual ekrength in trues $=62.5$ percent

## Kesidual atrength in girder $=62.5$ percent +100 <br> $=81$ percent

From Table A-16, Appendix A total shear in the second bay is 67 percent of maximum capacity, so this damage has no effect on the bridge class.

Case 3. The center vertical of one panel being completely severed reduces shear capacity in that panel to zero Table 214) with one truss carrying zero percent shear and the other 100 percent shear.
Therefore, the girder shear capacity is
50 percent. From Table A-16, Appendix
$A$, shear in the end bay is-

## Dead load = 21 <br> Live load $=58$ <br> Total: 79 percent

Total load must therefore be reduced 29 percent to the girder shear capacity of 50 percent. With dead load remaining constant, allowable live load becomes-

## $58 \cdot 29=29$ percent.

> Load clast $=29 \times 40$
> 58
> $=20$

Load class of the bridge is therefore determined by this damage to a center vertical in an end bay and must be lowered to class 20.

## EXAMPLE:

Given:
The 90-foot, US class 40 double-single bridge of the example above has the chord of one truss in the third bay from one end completely severed.

## Required:

What is the load class of the damaged
bridge without repair or reinforcement if-
Case 1. The damaged truss is capable of supporting its own weight?

Case 2. The damaged truss is not capable of supporting its own weight?

Solution:
Case 1. We know from above that capacity is reduced to that of a single-single bridge of the same span or class 12.

Case 2. We also know from it that capacity of the corresponding single-single bridge must be further reduced by half the weight of the damaged truss. Table 1-2 shows the difference in weight of the two types of bridge bay as-

[^7]The damaged truss, therefore, weighs-

## 9 baye $\times 0.65 \mathrm{ton}=2.93 \mathrm{hon}$ 2

Capacity of the 90 -foot single-single must be reduced by half this weight.

```
New clasa \(=12 \cdot 1.16\)
 \(=10.54\) (class 10)
```


## REPAIR METHODS

Damaged deck and bracing parts can be easily replaced with spares. However, replacing damaged panels is almost impossible without first relaunching bridge, which is difficult and time-consuming. If panel damage results in greater loss of capacity than can be tolerated, the bridge can be repaired by reinforcement or welding. Reinforcement is preferred because welding can cause serious added damage unless it is done in favorable conditions by experienced personnel.

## REINFORCEMENT

Damaged panels and chords are reinforced in several ways.

Shear capacity lost by damage to panel vertical and diagonal members is restored by adding complete trusses or partial stories or by replacing damaged bays, as follows:

- Repair damaged single-single bridges by adding complete trusses.
- Use a complete truss when damage extends through several bays of doubletruss bridges.
* Add a partial story when damage is confined to one or two bays on long spans. The partial story must extend two bays beyond both ends of damaged panels. In case of damage to first or second end bays, the partial story extends from end of bridge to two bays beyond the damaged panels.
- If the end bay of double or triple-story bridges is seriously damaged it must be replaced. Jack the bridge onto launching rollers and build a new bay at the undamaged end of bridge. Roll the new bay over the gap, dismantle the damaged bay, and lower the bridge onto its original bearings.
- If chord and web damage occur together, make repairs according to the above rules. Damage to exterior chords alone can be repaired with supplementary chords extending two bays on both sides of damaged panel. Modified bracing frames must be used with supplementary chord splices of top chords of double- and tripletruss bridges to maintain a continuous bracing system.


## CLASS

The posted class of the bridge must be reduced by the dead weight of the partial story or supplementary chord.

The capacity of a girder reinforced with a complete truss is determined by the method for assessment of damage in terms of reduction of load class.

## WELDING

All panel-bridge parts can be repaired by welding. Damaged parts which can be removed, however, preferably are replaced with spares. Repair work must be carefully done to prevent distortion and ensure proper fit of all parts.

Splice plates secured by fillet welds are more reliable than butt welding alone. Splice material should be mild steel plate about 50 percent greater in cross-sectional area than the damaged section of the member being repaired. Splice plates should be arranged to match as closely as possible the shape and position of the damaged section they replace. The minimum length, in inches, of a 14 -inch (. 64 centimeters) fillet weld required on each end of a splice plate is 10 times the crosssectional area of the plate in square inches (Figure 21-1 page 284).

## thinch weld: <br> L (inchee) $=10 \times \mathrm{A}$ (square inchea)

## If sininch fillet welde are used, the faclor is 7 instead of 10 .

## Yutinch weld: <br> L (inches) $=7 \times \mathrm{A}$ (aquare incheas)



Fifure 2f.l Effentive length of usild on ewoh end of applice plate

Before making welded repairs, clear the area around the fracture by cutting all jagged edges. Always do straightening cold.

Both mild- and high-tensile low-alloy steels of American parts can be repaired by either electric-arc or oxyacetylene welding. For electric-arc welding, the heavy-coated mildsteel shielded-arc electrode (Lincoln Fleetweld No. 5 or equal), included in the electric arcwelding set No. 1, is the most satisfactory. If welding is done by the oxyacetylene process, use a copper-coated mild-steel rod.

Cases of typical chord damage with correct repair are shown in Figure 21-2 Figure 21-3 shows typical damage repair of panel-web members. It is possible to use a standard set of strips in many cases, the more useful sizes being $31 / 2$ by $1 / 4$ by 12 inches ( 8.9 by .64 by 30.5 centimeters), and $11 / 2$ by $1 / 4$ by 12 inches ( 3.8 by .61 by 30.5 centimeters). The choice of strip sizes is determined by the requirement of using downhand welding wherever possible.

Removable parts can be repaired using the same general procedure as for panel members. Splice plates on transoms must not interfere with stringers or with positioning the transom seats on the girders. Welding of the lighter parts must be done carefully to prevent distortion and loss of interchangeability.

## DISMANTLING OF BRIDGE

Panel bridges are temporary structures and should be replaced as soon as possible with semipermanent bridges. A panel bridge is dismantled in reverse of the order in which it was assembled. After dismantling, the panelbridge parts are returned to the depot for reuse at another site.

The proper sequence of operations in dismantling a panel bridge is-

1 Take up ramps, jack up bridge, and place rocking rollers under each end and plain rollers on near-bank assembly site.
2 Remove end posts and assemble launching nose or counterweighted tail.

3 Pull bridge back on near-bank plain rollers.

4 Dismantle bridge and nose parts.

## REPLACING OF BRIDGE

While the new bridge is being constructed, some provision must be made to allow traffic to cross the gap. This can be done by building a bypass, by building the new bridge directly under the panel bridge, or by building the new bridge alongside the panel bridge and relocating the approaches.

Traffic can be diverted over a nearby bypass, such as a temporary bridge or culvert, while the panel bridge is being dismantled and the new bridge is being built.

When a new two-lane bridge is being built, one lane is completed before the panel bridge is removed. This completed lane carries the traffic while the panel bridge is dismantled and the second lane is built.

When the new bridge is built directly under the panel bridge, traffic is interrupted only for a short time while the panel bridge is dismantled and the finishing touches are added to the new bridge deck and approaches. The new bridge can be either a timber trestle or a culvert with solid fill.

Timber trestle bridges can usually be constructed beneath the panel bridge and can be used as a working platform for driving piles or erecting trestle. Culverts can be constructed directly underneath the panel bridge and an earth fill built up to the underside of the panel bridge. This fill is compacted, if only a shallow fill, and surfaced after the panel bridge is removed.


Fikare 27.2 Typical uvedtag repairn on panel choraik


Agare 2f 3 Typinal urefling repairs on patal. Lerb membere

CHAPTER 22

## EXPEDIENT USES OF PANEL-BRIDGE EQUIPMENT

Panel bridge parts are often used in the field to build improvised structures. To aid in their proper use, the capacities of the parts are given here. In all cases, allowance must be made for impact and load-distribution factors. Table 22-1 (page 287) gives the strength of M2 panel-bridge parts, and Table 22-2 (page 289) gives the strength of panel-briage erection equipment.

## EXPEDIENT DECKING FOR PANEL BRIDGE

If stringers and chess are not available, an expedient deck can be laid on the transoms of a panel bridge. Timber or steel stringers with a wood floor can be used, or steel treadways can be laid on the transom.

## EXPEDIENT WIDENING

## OF PANEL BRIDGE

The normal panel-bridge roadway width is 150 inches ( 381.8 centimeters). The roadway can be widened to accommodate wider vehicles. Some wide vehicles will have very little roadway clearance and require caution in entering the bridge; however, it has been found that the ribbands should be retained on the bridge for these wide vehicles. The ribbands help guide the vehicles across the bridge and prevent damage to the bridge trusses.

Certain non-US vehicles are more than 150 inches ( 381.8 centimeters) wide. By removing the ribbands, a roadway width of 165 inches (419.1 centimeters) may be obtained. Normal chess, used for a guard rail, should be bolted to the panels just below the top chord of the bottom story as protection against damaging the truss panels. To secure the chess to the panels, use carriage bolts with washers, with either steel plates or an added plank behind the truss to bolt through. Limiting the wear tread to the normal width between curbs will allow the curbs to be replaced promptly after the wide vehicles have crossed. Prompt replacement of these curbs is necessary to ensure the bridge's normal operating capacity. (A few crossings by tanks may quickly loosen the nails so that the treads must frequently be renailed. The guard rails may be left on the truss panels either with the widened roadway or with the normal bridge.)

The capacity of the widened bridge may vary some from the standard bridge due to the increased eccentricity possible in the widened bridge. Use normal capacities under caution restrictions at all times when the curbs are removed.

Tahte 20. 4 Gtrength of A'z penei-prigge porta

| PAP1 | Lbid | 21FEMTM 110 ${ }^{2} 51$ | ILUSTRATMM |
| :---: | :---: | :---: | :---: |
| Whalk |  | * |  |
| Lent Mn+4 |  <br>  | : 5 <br> $k$ |  |
| Fal. ctald | (기 3 . 15, 4mum | ת |  |
|  |  | 70 | $\frac{151}{\text { Ficer }}$ |
| Cumblinitay |  Kal 0 mar | 1/A | (i) |
| bul, loeeting <br>  | 15) [amacuen whiniot | 64 |  |
|  |  Hane | 3ifi) H -IEA1 | 14: |
|  |  tert fort pas indat | N |  |
|  |  <br>  <br>  patichand por) | [14 |  |



| Phtil | 10.10 | sHIEWin 110 HEI |  | |
|---|---|---|---|---|
|  <br>  |  <br>  ป.7 | н | (ㄴ) |
| Pan smal |  <br> \|31|cespmian | 4 |  |
|  | 1Ib) lecel minise minn land batmitp phitl-mit nembi | เ |  |
| ***) maluat |  | 1 |  |
|  |  pow. <br>  <br>  <br>  | 10 |  |
|  |  * F Eman und mucial is Nof pual mexh | 44 | : wl |

7＇obie 22－1 Stragrth of Mis ponel－bridge partn－conthewed


Table 22．i Strangth nf 122 pancl－briage parfa－eontikemd

| P就T | なめわ | sifirinn Ifams｜ | dIU45TRATMON |
| :---: | :---: | :---: | :---: |
|  | （21）llamel if nerima it WHim | द1 $\boldsymbol{4}$ rich 14TH ｜animet <br>  |  |
|  |  | 19 | ｜피｜ |
|  <br> 144＊＊ |  | wil． <br> ＊m <br> J\＄7 Wes <br> lo－imad <br> uckea） | （11） <br>  <br> F． |
|  | 4un mitulal y． <br>  | ＊ |  |
|  | 込 | $\stackrel{*}{4}$ | （a） |

Tabke 22 i Strenffh of panci-bridite erecrion egwloment

| 戶斤RT | (10)0 | 3112m6h <br> , 10.ms |  |
| :---: | :---: | :---: | :---: |
|  | Il law max <br> 18! | I <br> 11 | : II <br> IJ |
| Heller etur | \% | 15 | (1) |
|  | 1tidyumerat | 9 |  |

Jalut $25 \cdot 3$ Limiting tpantr for Baiky Mis bridet



## SPANS WITHOUT END POSTS

Single-story bridges can be built without end posts or bearings, the bridge resting on timber cribbing under the end vertical member of the end panels. However, this method of construction is not recommended unless absolutely necessary. When this is done, the transoms supporting the ends of the last bay of stringers must be supported by one of the following methods:

- When the end transom is not supported by trusses, place it outside the verticals of the panels and on grillage. Place an extra transom in the seating just inside the
verticals of the end panel. Wedge blocking between these two transoms and lash them together. The ends of the stringers and ramps rest on and engage with the lugs of the end transom. Bolt bracing frames between the trusses at the end of the bridge. Table 22-3 lists the maximum spans that can be built with ends of the bridge supported in this way.
- When the end transom is supported by trusses, add an extra panel to the inner truss on each side of the bridge, and place a transom in this panel on the seating nearest the bridge proper. This transom
supports the ends of the stringers and ramps. Place rakers on this transom and bracing frames between the trusses at the end of the bridge proper. Extend grillage under the end vertical 2 feet ( 61.1 centimeters) on each side of the panel joint. A bridge of this assembly can carry the same load as a corresponding bridge with its end transom not supported by trusses. If the extra panel is added to all the trusses, the bridge can carry the same load as a corresponding bridge with end posts. In both cases, place cribbing under the center of the end transom when loads are over 30 tons ( 27.3 metric tons).


## CAUSEWAYS

Panel-bridge decking can be used to build an expedient causeway over the soft mud of a tidal riverbed. The causeway described here (Figure 22-1) has a capacity of 45 tons ( 41 metric tons) and can be used at all stages of tide to load heavy vehicles such as medium tanks on rafts. Its roadway can have a slope up to 1 in 5 and is not affected by heavy tracked vehicles that would normally cause a roadway of landing mats on corduroy material to break up. Use of panel bridge equipment or causeways is expensive in equipment, however, and should be controlled carefully to prevent a shortage of panel-bridge parts.

## Preliminary work

The causeway consists of a normal panelbridge deck of chess, ribband, and stringers supported on transoms set in ramp pedestals. To prevent scour and to distribute the load, rest the pedestals on a foundation of landing mats and sapling mats (chess paling or similar material). Place two pedestals under each transom and space the transoms 5 feet (1.5 meters) center to center. Use precut 4 - by 3 -inch ( 10.2 by 7.62 centimeters) timber spacers, or rakers with timber wedges, between the pedestals to take longitudinal thrust. Thread sway bracing through the outside holes in the transom webs and hold in place by bolts. Wire the button stringers to the transoms to prevent the decking from being lifted by the tide. Provide a nonskid surface by nailing down landing mat to the chess or wear treads. Use steel ribbands for curbing. Use holdfasts at each side of the causeway to anchor bays having a steep slope.


Migare 22.j Panel-bridife mancwly

## Erection

About 100 man-hours are required to erect 100 feet ( 30.8 meters) of this causeway. If the precut timber spacers are used instead of rakers with wedges, erection time can be reduced 25 percent. Place spacers at the same time as the pedestals, before transoms are laid. Do not tighten sway braces until stringers have been placed.

The maintenance party keeps wedges, sway braces, and anchor lines tight.

## Operation

At low tide, and at high tide during construction of the causeway, vehicles generally can be loaded and unloaded at the end of the causeway. The overhanging deck or adjust; able ramp of the raft rests on the end bay of the causeway so vehicles pass directly from the raft deck to the causeway. Where the causeway is begun at high tide, bays can be added at the rate of one bay in about 20 minutes as the tide lowers.

At high tide, the lower end of the completed causeway is submerged and rafts are loaded and unloaded at the higher bays. Use an adjustable landing ramp hinged to the raft to
bridge the gap between the causeway and shore end of the raft. The shoreward ponton can be grounded on the submerged causeway, but care must be taken to position the raft so the water is deep enough to permit maximum displacement when the shoreward ponton grounds.

## PANEL BOX ANCHORS

An expedient heavy rubble box anchor can be made from four panels welded into a box with heavy wire net and filled with rock. Completely filled with rock, the anchor weighs about 10 tons. Heavy anchors of this type are used to anchor heavy floating bridges in swift currents and in streambeds in which the standard anchor will not hold.

## OTHER EXPEDIENT USES

Panel-bridge parts can be used to build gantries (Figure 22-2), anchor-cable towers, high-line towers, towers for suspension bridges (Figure 22-3), truck-loading traps, and other structures when building materials are not available. Angles and I-beams can be salvaged from damaged panel-bridge parts to be used for expedient construction.


FAgre 22\% Constrweling a akip-budiding cantry from panci-bridge parta


Finure 22.9 Exitey anaprions-bridet tower

## DEMOLITION OF BRIDGE AND PARTS

The success of these demolition methods depends on the use of a uniform procedure by all units in the theater. All ranks must be impressed with the importance of following the principles stated in this chapter. The destruction must prevent both enemy use of the bridge as a unit and use of its parts for normal or improvised construction.

## ORDER AND METHODS OF DESTRUCTION

To prevent use of existing bridge, cut tresses so bridge drops into gap, and destroy abutments. To prevent reconstruction of a complete bridge, destroy one essential component not easily replaced or improvised. This component must be the same throughout the theater so replacements cannot be obtained from other sectors. The panel is the only component fulfilling these conditions. Always destroy all panels first. To make a panel useless, remove or distort female lug in lower or tension chord. Destruction of both female lugs is unnecessary.

Also destroy certain other components, such as transoms and decking, usefut to the enemy for improvised bridging. Destroy components such as stringers, ramps, jacks, rollers, and erection tools only if time allows and explosives are available. Because the relative importance of these components varies considerably, follow the order of destruction given just below.

After the bridge is collapsed and the abutments destroyed, and if time permits, destroy individual components in the order used for destroying stacked equipment female lugs in lower chord of all panels; transoms and panels Figures 23-4 and 23-5, pages 295 and 296); chess; stringers and ramps; jacks, rollers, and erection tools; and remaining small parts.

## DESTRUCTION OF BRIDGE

Cut bridge in one or more places by cutting panels on each side of the bridge and sway braces in the same bay (Figure 23-1). Stagger the line of cut through the panels (inset, Figure 23-1). Otherwise the top chords may jam and prevent the bridge from dropping. In double or triple-story bridges, increase the




For further destruction, place charges on component parts of the bridge, such as panels, transoms, and stringers (Figures 23-2 and 23-3). Stack and bum decking.

Charges and methods of placing various explosives are given in Table 23-1 (page 294). Wedge all charges in place. Use methods and charges described in FM 5-25 for destroying abutments.


bridfc, mith obtecement of cherped to deptroy
dower formalo tugy pinaed io adjaining manetr



## DESTRUCTION OF

## STACKED EQUIPMENT

Destroy panels and transoms in stacks. To dispose of stringers, ramps, jacks, rollers, small parts, and erection tools, dump them over large areas in places such as the sea, rivers, or woods. Bum decking. Methods of destruction are described in Table 23-2, and shown in Figures 23-4 and 23-5 (page 296). Tamp all charges.

## DESTRUCTION OF CABLE

REINFORCEMENT SET
When capture or abandonment of the cable reinforcement set is imminent, the responsible unit commander must make the decision either to destroy the equipment or to make it inoperative. Based on this decision, that commander orders how much should be destroyed. Whatever method of demolition used, it is essential to destroy the same vital
parts of all cable reinforcement sets and all corresponding repair parts.

For demolition by mechanical means, use sledgehammers, crowbars, picks, axes, or any other heavy tool available to destroy the post assemblies, fixtures, and braces; the cable-connection beams and span junction posts; the cable assemblies; and the cabletensioning or manual hydraulic-pump assem-


| Fari rit tic cy OA DESTROFID |  | FIGUME - $E$ F | 日[umas | PREFERTET ExP! | IWBIMDİAL CHABAES 1 OIAL |  | |
|---|---|---|---|---|---|---|---|
| Panels \|stathod wealiting or harizantal|yl |  altorath and and pants | 25-4 | Use widen <br> fint blocks camed be tritud lotues par |  | 1 lb | 1tp per hav pank |
|  |  <br>  | 37.3 | Ust Erdpion Congiderable metceing is ingsired <br>  <br>  | 141 <br> Composinom C 4 | $\begin{aligned} & 1416 \\ & 1416 \end{aligned}$ |  |
| Transpas \|slatedid andery sidit | Wrass top lbate ean ante, and but man alter ule puws of trenams al valying *ivtatrey fow and | 25-5 | Ulse midelin! <br>  <br>  <br>  140) 1bing | 161 <br> Cீ. |  |  trangen <br> Ithertmu <br> Iranty |
|  | On wit |  | Dase merging | TNT <br> Cor | $\begin{aligned} & \hline \text { 1II } \\ & 1 \text { H } \end{aligned}$ | $\begin{array}{ll} \text { IN } & \text { 部 } \\ \text { IN } & \text { ifincon } \\ \hline \end{array}$ |
| 61097 |  |  |  <br>  <br>  [frims in wimprord mappad <br>  |  |  |  |
| STintert. Ia Follark and iresige tools |  |  | \|ricatar in sas rivers, moodi or |  |  |  |


blies. For demolition by explosives, place as many charges as the situation permits. Detonate charges simultaneously with detonating cord and suitable detonator. Place at least one $1 / 2$-pound (. 2 kilo) charge on each cable and each cable-connection beam assembly. For demolition by weapons, fire on the cable-connection beams and vertical posts with the heaviest suitable weapons available.

##   

All operators should be thoroughly trained in the destruction of the cable reinforcement set. Simulated destruction, using all methods listed above, should be included in the operator training program. It must be emphasized in training that demolition preparations are usually made in critical situations with little time available for destruction. For this reason, operators must be fully familiar with all methods of destruction of equipment and be able to carry out demolition instructions without reference to this or any other manual.

faraged of tranmoms

APPENDIX A
OVERSIZED TABLES
See pocket envelope inside back cover for uneven-numbered pages 297.1 through 321.
Even-numbered pages 298 through 322 are blank.

Tables B-1 and B-2 of this appendix list items which accompany the cable reinforcement set for installation or crew maintenance, as well as supplies needed for initial operation of the set. Figure B-1 (page 324) shows the five hasic issue items listed in Table B-1. Figures B-2 through B-5 (pages 325 through 328) and Tables B-3 (page 329) and B-4 (page 330), show maintenance and troubleshooting procedures for the set, as described in Chapter 15. Table B-5 (page 331) lists the repair parts needed to maintain the set, while Figures B-6 through B-12 (pages 332 through 336) show a number of these parts separately.



Tatie 52 dfainlengncs and apratiny nupplien

 7 GAGE. CABLE-TENSHO
3 HOSE A5SEMGLY
4 RIPEE. MATALLA ${ }^{+}$
3 WRENT.H. BDX STEEL. SUUGGWG.TYPE'

* FAR speriknidetalisseitable g.


Figury $g_{\text {I Batic induc ifems }}$


I DIAL.WDICATEGG (ABLE-TENSION GAGE 2 HOSE A5SEMBLY
3 FILL PLUG
4 MYDRAULEC POWER UNTT

## STEP 1

REMGVE FILLER PLUG FROM TDP OF PUMPWG UFIT RESERNOIA; OLSHOUO OE S PELOW TOP SUAFACE OF RESERYOR

## 


 OMEAFRL
©TEP 3
remstiml gillea plug in top of pumpmg unit RESERYONA

## GTEP 1

 END DOWN

## STEP 2

REMDVZ FILLER PLUG AND БATKKET FROM LIFFERENU OF PUMPING UNIT RESEAVOHA；DIL SH\＆ULD 日E vISIGLE ON FLAT PART DF DHEGTICE

## STEF 3

ADOQR DRAINHYOAA以LIC，OL COMFORMING TOFPECIFI－ CATJDM MIL．H．10295，LUBRICATIQN ØIL．DE5 10． NOT GVEAFILL

## STEP 4

 END AF PUMPINLi UNIT AESERVOIR．THETA RETURN PUMPING UN\＆TT TD HOAIZÓNTAL POSGION


1 UPPER END DF RESERYOHR 2 FILLEA．PLU宜 A\＄\＄EMABLY 3 DIPSTICK

4 GASKET
5 RESERWOIR

fifury tis Struiting Anhd－driven hydrawlic ram pump ranervair


of tubte-tenetioning anpermbly

STEPA
1 UNSLAEW GAGE FROM PORT

a AENOVVE PUGG ANL IHSTALL NEW GAGE IA PORT
STEP 8

2 THE FOLLOMNGG PROCEDURE IS USED IO MEPLACE MOSES AND F, TINGS
a) PUMP HOSES
 Valve FIIIINL
2) UNSCREW FIPE FITTINGS FAOM VALVE
(3) UNSCREW FLDW AEGULATOA FAOM PIPE NIPFLE

CI LNSLREW FITE NIPARE FAOM FEMALE QUICK-DISCONNE TTT COUPLING
( 51 INSTALL TE*APDAARY PWIGS INALL PLATS
DISCLAD DEEECTIVE
INSIILLED PROPERLY
alctimber hosc
な LINSCREWOUICK. OISCOMMECT COUPLING HAL F FROM EMD OF HOSE ANO UNSCAEW HOSE FRONA CYLNDER 2| INSTALL TEMPORARY PLUGS
9 RECONNECT OUICK-DISCONNECT COUP INGS TO CYEINUEA
stepe
I UNSCREW OUICK. DISCONNECT CONPLING HALF FROM PIPE MIPPL
2 UNSCREW' PIPF NIPFI F FROM CYLINDE R
3 INSTALL TEM FOFARY PLDIE IN CTLINDE
4 INSTALL NEW PARTS IN REVEREE OROEA

NQTE. FOLLOMING ANY REPLACEMENT PROLEEPUAES. REFER TO FIGURE 15 57 FOA CHECKINA FLUID LEVEL OF hydraulic system, alio or Remove hypaiulic fluip ti maintain Proper fuid level for efficient GPEHAHON OF CAELLE. TENSIIONING ASSEMELY

## 「FFMALE GLICK．ㅁISCONREGT COUPGING END

 2 RESERTMOR3 Hersif A55EMALY
－FLOW REJULATOR
5 GAGE AOAFIER
5 DIAL．JMDICATANG T．AEI．E．TENSION GAG［
7 CONTROL VALVE
Я MALE OLIEK USFDNNEGT COUPLNG ENG




## sTEPA

1 UNSCREYi GAdE FROM PORT OГ GAGE ADAPTFA
2 INSTALL TEMPORAAV PLUG TO PREWENT ENIHY（DF FOREGGN BATTER IN HYOAAULIC FLUIO
3 FLMONE PLUG AND INSTALL NEWGAGE IN POAI DF TUGFF AOAVTEF

## sTEA B

1 UNGCREVi MALEGUILK－DISCONNECI COUPLNG FAOMONF HOSE GNOLNSGREWMQSE FAGMBUSHANG AI YALVE QISCQNNELT FI SWN REGULATOA FRQM DTMER HDSE AND UNSCAEW HOSE FRQM BUSHING：AI GAGE AUAHTER 2 UNSCAEW 日USHING FAOM USLVE AND GAGE ADAFILE
3 UNSCREW GAL心E ADAPTER FROM UALVE
4 L＇NSCREW FLOW；RESLI AJQR FROM．YIP＇NIPPLE
UNSCREY：FIPE NIPPLE FROM FEMALL OUICK．ㅁI5CONMECT CKHJPLIVG
6 Ih STAL TEMP PAAAY PLUGS IN ALL PARTS
 THAST FLOUH RECULATOR IS INS：ALLED FTOPCRLY

HOTE：FOLLDNING ANY REPLAGEMENT FADCECUHES REFEA TO ：ILSHE i5．5日 FOA CHECKING FLUIC LFVEL GF
 OPERATION UH HAND．DEAVEN HYOHAL＇LIC RADA PUMF

Tably B. 3 Cable meinforcement tel-prasantive maintenance checka and arvicea



Foble B. Repair perta liat





## CAELE AND CYLINDEA NUTS

2 HOSE ASSE MBLY｜SHORTFFE MALE
3 FEMALE OUICK－DISCONNELT COUPLING
4 HOSE MSSEABLY T5HOATI MASLE
5 MALE OINLK．UISCONNECT COUPLING PMML ROD CHANN
7 DDUELE－ACTING HYORAULIC CYLINDER 8 ADAPIER
9 HOSE AS5EMBL＇YILUNGI FEkthLE
10 HODE AS5EMELY ILONGF HayE
11900 Eしロดゆ
12 FLOW REGULATOA
13 GAGE，DHAL－HDDCATING（ABLE－TEMSIGM 14 EUSHANG
15 POWER UNIT．HTOR的JLE
IE PUZL ROO
IT HEX MUT．\％＂－DIAM

19 RDD－TO－CAELE CDUPLIMG
2ם EOLT．TYPE SET SCREM





I FEMME GUKK. IISCOHNEET COUPLMG Z MALE DUILK-GISCONHECT COUPL 1 HDSE ASSEKHBLY, FEHALLE
4 HOSE ASSENELY, MALE
5 MIPPLE , PIPE. HEXAGON
6 GAGE ADAPTER
7 DIAL-INDICATING CABLE-TENSAON TAGE GFLOK REGULATDR
S HAND-DRWEN HYORALILIC. RAMA PLMAP



## CABLE.REEL SHAFT

2 日GLT, 4\%- LG
3 HEX NUT. $3_{5}^{-1}$ DIMM
4 CABLE REEL
5 CABLE REEL SUPPORT

Figure th-I Cuble rexd ond rainted partis


## APPENDIX C

## USE OF SALE CHARTS IN DETERMINING MOMENT AND SHEAR

When a simple horizontal beam is loaded, it deflects, or bends downward, and the horizontal fibers in the lower part of the beam are lengthened (tension) and those in the upper part are shortened (compression). The external forces act to produce a bending moment. The moment of the internal forces (stresses) resisting this bending is called the resisting moment. In Figure C-1, in that part of the beam to the right of section C , the counterclockwise bending moment produced by the external force P and Rr is resisted by the clockwise resisting moment produced by the tensile and compressive stresses in the beam at section C. Within the strength of the material, the resisting moment at any section is equal to the betiding moment at that section. When abeam is designed, the dimensions must be such that the maximum resisting moment that the beam can develop is at least equal to the greatest bending moment that may be imposed on it by the external loads.

## BENDING MOMENT

The following procedures, formulas, and other data are relevant to the determination of maximum allowable bending moment:

- The bending moment at any section (point) of a beam for an external load in a specific position is found as follows:

1 Determine reactions caused by load in this position.


1 RESISTING MOMENT OFINTFRNAI FQRIES (STRESSES)

3 CUMPRESSIDN STRESS
4 TENSLE STAESS
5 DENOING KNOMEMT CAUSED EY EXTERNAL FORCE


## Fivare L'-2 Problew in bendint

2 Take either reaction and multiply it by distance of that reaction from section under consideration.

3 From this product, subtract product of each load applied to beam between reaction and section times the distance from that load to section.

- In Figure C-2, external bending moment at $C$ equals $M_{c}=\left(R_{L} \times 20\right)-(8,000 \times 10)=$ $260,000-80,000=180,000$ foot-pounds, or $M_{c}=18,000 \times 12=2,160,000$ inch-pounds. This may also be found by taking forces from the right end.
- The bending moment at any point in a beam due to a moving load varies with the position of the load. For design, it is necessary to know the maximum moment that is caused by the load as it moves across the bridge.
- Maximum bending moment caused by a single concentrated axle load occurs at
center of span when load is at center of span.
- Maximum bending moment produced by a uniformly distributed load occurs at center of span when distributed load covers entire span.
- If distributed load is shorter than span, maximum bending moment occurs at center of span when center of load is at center of span.
- The following formulas are useful in determining maximum bending moments caused by single loads on simple beams:

$$
\begin{aligned}
& \mathbf{M}=\frac{\mathbf{P} \mathbf{1}}{4} \quad(\text { Concentrated center load } \mathrm{P}) \\
& \mathbf{M}=\frac{\mathrm{W} \mathbf{1}}{8} \quad \begin{array}{l}
(\text { Total load W uniformly distri- } \\
\text { buted over span 1) }
\end{array}
\end{aligned}
$$

$\mathrm{M}=\mathrm{w} 1^{2}$ (Load w per linear foot distri-
buted over span 1)
$\mathbf{M}=\mathbf{W} \frac{(2 \mathbf{1} \cdot \mathbf{b})}{8}$ (Load W partially distri-
buted over span 1)

EXAMPLES: What is the maximum bending moment produced in a 20 -foot span by a single concentrated axle load of 30 tons? By a total load of 5 tons uniformly distributed over the span (dead load)? By a 30-ton tank that has 147 inches of track?

## SOLUTIONS:

For a single concentrated axle load of 30 tons:

$$
\begin{gathered}
\mathbf{M}=\frac{\mathrm{P} 1}{4} \quad \begin{array}{c}
\text { Where } \\
\mathrm{P}=30 \text { tons ( } 60,000 \text { pounds }) \\
1
\end{array} \\
\mathbf{M}=\frac{\mathbf{6 0 0}, \mathbf{0 0 0} \times \mathbf{f e e t}(240 \text { inches })}{\mathbf{2 4 0}}:=3,600,000 \text { inch- } \\
\text { pounds }
\end{gathered}
$$

For a uniformly distributed load of 5 tons:

$$
\mathbf{M}-\frac{W \mathbf{l}}{\mathbf{N}}=\frac{\mathbf{1 0 , 0 0 0} \times \mathbf{2 4 0}}{\boldsymbol{R}}=300,00 \text { inch- }
$$

For a 30-ton tank:

$$
\begin{aligned}
\mathbf{M} & =\frac{\mathbf{H}(2 \mathbf{1} \cdot \mathbf{b})}{8} v \frac{60,000(2 \times \cdot \mathbf{4} \mathbf{4} 0 \cdot 1 \mathbf{1 4})}{8} \\
& =2,497,500 \text { inch-pounds }
\end{aligned}
$$

- For a series of axle loads on a span, maximum moment may occur under the heaviest load when that load is at the center of the span, or it may occur under one of the heavier loads when that load and the center of gravity of all the loads on the span are equidistant from the center of the span.
- Further details on computing maximum bending moment produced by two or more loads on a span can be found in engineering handbooks.
- For the design of military bridges the computation of maximum bending produced by a series of axle loads or that produced by a uniformly partially distributed load, such as a tank, has been simplified by the use of single-axle load equivalents (SALE). The SALE is that single-axle load that, when placed at midspan, will cause the same maximum moment as the maximum moment caused
by the actual vehicle. From the formula above for a concentrated center load P, and substituting SALE, we have



## RESISTING MOMENT

Maximum allowable resisting moment that a beam can develop is the product of maximum allowable fiber stress for the material and section modulus of the beam, which is a measure of the capacity of the cross section of the beam to resist bending. Where M is the maximum allowable resisting moment that a beam can develop; $f$, the allowable extreme fiber stress for the material; and $S$, the section modulus, their relationship is expressed by the formula $\mathrm{M}=\mathrm{fS} .5$ depends solely on shape and size of the cross section and $f$ on the material of the beam. For rectangular beams, such as timber stringers,
$\mathrm{s}=\frac{\mathrm{bd}^{2}}{}$, where b and d are the treadch and ${ }_{6} \mathrm{f}$ deptls of a section.

## For a round $\log _{\text {, }}$

$\mathrm{S}-\frac{\mathrm{d}^{1}}{10}$ where d is the diameter.
S for I-bems and other structural steel shapes may be found in tables in standard engineering handbooks. Values of $S$ for selected I-beams and WF (wide flange) beams are given in Tables $\mathrm{C}-1$ and $\mathrm{C}-2$ (page 340). The stress $f$ is ordinarily expressed in pounds
per square inch, and band din inches, giving $M$ in inch-pounds. Values of $f$ will vary according to type of stress and type of material. For this text and the majority of field design, values as given in the next section are used. For example, if the extreme allowable fiber stress ( f ) in bending of the wood in a rectangular beam 6 by 12 inches is 2,400 pounds per square inch, then the maximum allowable bending moment that beam can resist is:


Taple C． 2 Properties of selectere wide－fianke beanar

| 伵 | WIOTH OF Fしが施 link |  FED FOOS ｜lbs | $\begin{aligned} & \text { SECTION } \\ & \text { warules } 151 \\ & \text { (in) } \end{aligned}$ |
| :---: | :---: | :---: | :---: |
| 36 | 164 | 230 | 836 |
| 36 | 12 | 150 | 509 |
| 3 | 13h | 700 | 50 |
| 13 | 114 | 15 | 155 |
| \＄0 | 15 | Jn | 521 |
| 3 | 1045 | 1的 | 798 |
| 27 | $1{ }^{1}$ | 145 | 40 |
| 23 | 10 | 11 | 133 |
| 24 | 14 | 15 | 131 |
| 24 | 12 | 14） | 749 |
| 24 | 9 | 74 | 170 |
| 21 | 17 n | 112 | 250 |
| 31 | 9 | 5 | 168 |
| 31 | $1 \%$ | 59 | 119 |
| II | $1]^{6}$ | \％ | J 4 |
| 18 | th | 4 | 111 |
| 18 | $3{ }^{3}$ | 45 | 12.3 |
| 15 | 114 | H | 1 d |
| 16 | 14 | 4 | \＄4， 1 |
| 16 | 7 | 5 | \％ 6.3 |
| 14 | 144 | ${ }^{7}$ | 138 |
| 14 | 12 | 7 | 121 |
| 14 | 10 | 4 | 92.2 |
| 14 | B | 45 | 62.7 |
| 14 | 6＊＊ | 30 | 41.8 |
| 12 | 12 | 65 | 明． 0 |
| 12 | 10 | 35 | 70.7 |
| 12 | － | 40 | 31.9 |
| 12 | 施 | 23 | 30.9 |
| 10 | 10 | 49 | \＄4，6 |
| 10 | 1 | 31 | 35.0 |
| 10 | $5 \%$ | 21 | 2L．${ }^{\text {a }}$ |
| 日 | 8 | 31 | 7 7.4 |
| 8 | 64 | 24 | 20.1 |
| B | $5 \%$ | 17 | 14.1 |



## SHEAR AND SHEARING STRESS

Any load applied to a beam induces shearing stresses．There is a tendency for the beam to fail by dropping down between the supports （Figure C－3（A））．This is called vertical shear． There is also a tendency for the fibers of the beam to slide past each other in a horizontal direction（Figure C－3（B））．The name given to this is horizontal shear．

The following procedures，formulas，and other data are relevant to the determination of maximum allowable shearing stress：
－For beams supported at both ends，the shear at any section（point on the beam）is equal to the reaction at one end of the beam minus all the loads between that end and the section in question．To cal－ culate maximum shear，it is necessary to find the position of the loads that produces the greatest end reaction．This usually occurs when the heaviest load is over one support．
－In timber we find that because of the layer effect of the grain，the stringers are weaker horizontally along the member． But the stress numerically equal to the horizontal direction is numerically equal to the vertical direction，so design is on the basis of the stress in the vertical direction．In military bridge design a shear check must be made if the span length in inches is less than 13 times the depth of the stringer．
－The average intensity of shear stress （horizontal and vertical）in a beam is obtained by dividing maximum external shear by cross－sectional area of the beam． However，shear is not evenly distributed throughout the beam from top to bottom， so maximum shear intensity is greater than the average．Maximum shear inten－ sity occurs at the midpoint of the vertical section．

- For a rectangular section, maximum horizontal shear intensity equals $3 / 2$ times average intensity, or $-\mathrm{S}_{\mathrm{h}}=3 \mathrm{~V}$.

```
Where
 S}=\mathrm{ maximum shear intensity
 (unit shear stress) induced in
 the beam, in pounds per
 square inch
 V = maximum shear, in pounds
 b = breadth of beam, in inches
 d = depth of beam, in inches
```

- Over short spans where shear rather than bending may control, beams warrant special means of analysis. In computing maximum horizontal shear intensity, use the formula given above. In determining V for use in this formula, neglect all loads within a distance equal to or less than the beam height from either support, and place the design moving load at a distance three times the height of the beam from the support.
- For a circular section, maximum horizontal shear intensity equals $4 / 3$ times average intensity, or- $\mathrm{S}_{\mathrm{h}}=1.7 \mathrm{~V}$

Where
$\mathrm{d}=\mathrm{s}$ diameter of beam, in inches

## CLASSIFICATION OF

## VEHICLES AND BRIDGES

The purpose of this paragraph is to outline office and field procedures for classifying vehicles and bridges in accordance with the vehicle and bridge classification system and to explain the field design of simple bridges. It explains vehicle and bridge classification procedures in sufficient detail to enable engineers who are familiar with the classification system to determine the proper classification of vehicles and bridges. It also explains how to select stringers for simple-span bridges and to design the substructure using timber trestle intermediate supports.

## STANDARD CLASSES

A group of 16 standard classes ranging from 4 to 150 has been established at the intervals shown in Figure C-4 (pages 343 and 344). For each of the standard classes two hypothetical vehicles are assumed: a tracked vehicle whose weight in short tons is the standard class number, and a wheeled vehicle of greater weight which induces about the same maximum stresses in a given span. For example, in standard class 4 the tracked vehicle weighs 4 tons, the wheeled vehicle 4.5 tons; in class 8 , 8 tons and 9 tons, respectively. The hypothetical vehicles and their characteristics are shown in Figure C-4. Although these vehicles are hypothetical, they approximate actual United States and United Kingdom army vehicles.

For each standard class both a moment class curve and a shear class curve are drawn. These curves are determined by computing the maximum moment and maximum shear induced in simple spans by the two hypo-
thetical vehicles for each standard class, converting these values to single-axle-load equivalents (SALE), in short tons, and plotting the SALE against the simple-beam span in feet. The envelope curve is then drawn through the maximum moment and shear values as shown in Figures C-5 and C-6) (page 345). The standard class curves are shown in Figures C-7 through C-12 (pages 345 through 348). In computing maximum moment and shear, space the vehicles at normal convoy spacing, with an interval of 30 yards from the tail of one vehicle to the front of the next vehicle.

## SPECIFICATIONS

The basic assumptions and specifications used here for design and capacity estimation data are as follows:

- As regards bending stress: steel-27,000 pounds per square inch; timber-2,400 pounds per square inch.
- As regards shear stress: structural steel sections- 16,500 pounds per square inch; steel pins and rivets-20,000 pounds per square inch; timber- 150 pounds per square inch.
* As regards impact: steel-15 percent of live load moment; timber-none.
- As regards the lateral distribution factor theoretically, two stringers are twice as strong as one, four are twice as strong as two, and so on; actually, this is true only if
each stringer carries an equal share of the total load. A stringer directly under a wheel load is more highly stressed and carries a greater portion of the load than those farther to the side. Because of this nonuniform lateral distribution of a wheel load among stringers, the total width (or number) of stringers required to carry a particular load is greater than the total width (or number) that would be required if all stringers carried an equal share of the load. This requires an increase in stringer width (or number of stringers) and is expressed as a ratio called lateral distribution factor. For design of two-lane military bridges with vehicles on the centerline of each lane, the factor is 1.5 .
- As regards roadway widths: a minimum clear width between curbs of 13 feet 6 inches for single-lane bridges and 22 feet for two-lane bridges.
- As regards the distance between road contacts of vehicles following in line: 100 feet.


## OFFICE DETERMINATION

Use the following method to determine vehicle class number in the office:

1 Compute the maximum moment produced by the vehicle in at least six simple spans of different length.

2 Convert maximum moment to SALE using the formula, SALE - 4M

## L,

in which $\mathrm{M}=$ maximum moment in foottons, and $\mathrm{L}=$ span length in feet.

3 Plot SALE against corresponding span length.

4 Draw curve through the points plotted This is the moment class curve for the vehicle.

5 Superimpose the curve over the standard class curves for moment (Figures C-7, and C-9).

6 Determine the class of the vehicle by the position of the vehicle class curve with respect to the standard class curves. Round off any fraction to the next larger whole number.

Repeat the last three steps for maximum shear, using the formula, SALE = shear.

The class of the vehicle is the maximum class determined from either the moment or shear curve. In most cases, moment will govern


Fuplare C. 4 Stanifard class, hyporhetical urhieice, and uphicie eharacteristit

| $\begin{aligned} & 2 \\ & 3 \end{aligned}$ <br> 30 |  | WHEELEU VE゙ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\begin{gathered} \text { MAR } \\ \text { SIUC1: } \\ 4 R 1 E \end{gathered}$ |  <br>  |  |  |  |
|  |  |  | $\begin{gathered} \overline{(C)} \\ 10 \\ 1 \end{gathered}$ |  | $\text { Single die } 1600 \cdot 24$ | Sinule hale 16.000 ： <br> Harle dxa 1400 \％ 2 | 领 |
| $\because 1$ |  |  | $\begin{aligned} & \overline{5} \\ & 1 \\ & 25 \\ & \end{aligned}$ |  |  |  |  |
| 1. |  |  | $\begin{aligned} & \overline{0} \\ & 1 \\ & 255 \end{aligned}$ |  |  |  <br>  |  |
| $\alpha$ |  |  | $\begin{gathered} 61 \\ 16 \\ 7 \end{gathered}$ |  |  |  | $\text { SU HHP DI } 24 \text { Ot } \times 29$ |
| 4in |  |  | $\begin{aligned} & \text { 菖 } \\ & 1 \\ & 30 \\ & 7 \end{aligned}$ |  |  | Sinle hale 21 D0 ： 24 <br>  |  |
| 1．4 |  |  | $\begin{gathered} \bar{G} \\ 12 \\ \mathbf{~} \end{gathered}$ |  |  |  |  |
| $18:$ |  |  | $\begin{aligned} & \text { (1) } \\ & 1 \\ & 36 \\ & 7 \end{aligned}$ |  |  |  | $\int_{-2000}^{20.000+2020029}$ |
| 126 |  |  | $\begin{gathered} \text { 10 } \\ 1 \\ 12 \end{gathered}$ |  |  |  | $\left\lvert\, \begin{aligned} & \text { 21.0004 0n 20 00 : 27 } \end{aligned}\right.$ |

finare C．S Standard ciarn，hypotheticat vehiciss，and velhicie characterintic！－continthed


Figure C'S Typlent itandard efan ewring fotionqul)







 180


SIMPLE GEAM SPAN TFEETF






Figure C.d2 Standerd clam mwent fohemely 30 ta 150

## EXAMPLES:

Single vehicle
Figure $\mathrm{C}-13$ shows the moment curve for a $21 / 2$-ton, $6 \times 6$ dump truck superimposed on the standard class curves. From the figure


it is seen that the curve for this vehicle lies between the class 4 and the class 8 curves and from its position with respect to these curves the vehicle is class 8 .

Combination zehicle over class 40
Figure C-14 shows the moment curve for a M26A1 tractor with transporter M15A1, loaded, superimposed on the standard class curves. From the figure it is seen that at a span length of 100 feet the superimposed curve crosses the standard class 70 curve and begins to level off. It does not cross the class 80 curve. From its position with respect to the standard class curves, the class of the vehicle is 77. Figure C-14 shows that the vehicle has lower classes at shorter span lengths. At a span length of 70 feet, for example, the vehicle's class curve crosses the standard class 60 curve, and for this span the class of the vehicle is 60 . The other classes of the vehicle for shorter span lengths are
similarly determined by inspection of the curves, and this information is placed on a cab plate. The section of the cab plate for this vehicle, loaded, shows the class restrictions for the various spans, listed in Table C-3.

## FIELD DETERMINATION

If time, information, or a qualified engineer is unavailable, and the office methods cannot be used, substitute one of the following methods:

- Compare characteristics such as dimensions, axle loads, and gross weight with characteristics of the hypothetical vehicles shown in Figure C-4.


## EXAMPLE:

An unclassified wheeled vehicle has a gross weight of 27 tons and a length of about 27 feet. By interpolation in Figure C-4, it is class 23. If, however, because of


SPRNTFET

## 

axle spacing and weight distribution the maximum single－axle load for this vehicle is 12.5 tons（greater than Figure C－4 shows as allowable for class 23），the maximum single－axle load is used as the classifying criterion．By interpolation in the maxi－ mum single－axle load column（Figure C－ （4），the vehicle is then class 26 ．
－Compare the characteristics of an un－ classified vehicle with those of a similar classified vehicle．

## EXAMPLE：

An unclassified single vehicle has three axles，is about 166 inches long，and weighs about $81 / 2$ tons．By comparison with a standard $21 / 2$－ton truck $6 \times 6-$ LWB，which weighs 8.85 tons，it is class 8 ．

Compare the ground－contact area of an unclassified tracked vehicle with that of a classified tracked vehicle．Tracked ve－ hicles can be assumed to be designed with about the same ground pressure．

TaNe CJ Ctace rentrictionn of（xoriont ppant for


| SPAN（ft） | CLASS |
| :---: | :---: |
|  | c＊ |
| 41912 | 74 |
| 12 Ia L6 | ＊ |
| 18 的 38 | 为 |
| 國他㖇 | 10 |
| 7148 | 76 |
| ILO）\％ed per | TI |

EXAMPLE：
An unclassified tracked vehicle has a ground contact area of about 5,500 square inches．By comparison with an M4 tank， which has a ground contact area of 5，444 square inches，it is class 36 ．
－Compare the deflection in a long steal span caused by an unclassified vehicle with the deflections caused by classified vehicles．In this method the span must be at least twice as long as the vehicles and the vehicles must be placed for maximum deflection．Measuring apparatus must be accurate to at least one thirty－second of an inch．

## EXAMPLE：

Select two vehicles of known class which are estimated to bracket the unknown vehicle class．Measure the deflections of a long steel span when loaded individually by each of the three vehicles．Move each vehicle on the span three times and read the deflection．Then average the three readings．

| Vehicle | Class | Deflection <br> (averaqe of three loadings) |
| :---: | :---: | :---: |
| A | 62 | $213 / 32$ in, or 2.406 in |
| B | 42 | $111 / 16$ in, or 1.688 in |
| C | unknown | $23 / 32$ in, or 2.094 in |

Class is considered proportional to deflection SO-

Unknown class $=$ lower class +
(Upper class-lower class) x deflection of unknown class minus deflection of lower class

Deflection of upper class
minus deflection of lower class


## GLOSSARY

ACRONYMS AND ABBREVIATIONS

| A | anchor span | Mk | Mark (model) |
| :---: | :---: | :---: | :---: |
| AR | as required | MOPP | mission-oriented protection posture |
| assy | assembly | mph | miles per hour |
| ${ }_{B P}$ | bridge | NATO | normal nose ${ }_{\text {north }}$ Atlantic Treaty Organization |
| BSS | British standard specification | no | number |
|  | cantilever span, caution | NPT | national pipe thread |
| C-C pltd | center to center | NPTF | national pipe thread fine |
| ${ }_{\text {circ }}$ cad pld | cadmium plated | pcs | near shore |
| $\pm$ | centerline | P | panel |
| $\mathrm{cm}^{\text {cm }}$ | centimeter (s) distanc (rom |  | point |
| d | distance from center of gravity | OD | quadruple-double |
| DD | to tail of bridge | OT | quadruple-single |
| diam | diameter | aty | quantity |
| $\mathrm{DL}^{\text {a }}$ | dead load | R | risk, rocking roller |
| DQ | double-quadruple | ref | reference |
| DS | double-single | ${ }_{\text {reinf }}$ | reinforced |
| DT | double-triple | RH | right-handed |
| D5 | double-five stories | RRT | rocking-roller template |
| ETO | European theater of operations | SALE | simple suspended span <br> sindle-axle-load equivalent(s) |
| FS | far shore | SALE | single-axle-load equivalent(s) soip-bearing capacity |
| gal | gallon(s) | sq | square |
|  | horizontal | SS | safety setback, single-single |
| hex (hd) | hexagonal (head) |  | tracked-load class |
| hryd | hour hydraulic | T/ ${ }^{\text {dif }}$ | tons per square foot |
| hyd | impact | thd | thread. |
| in | inch(es) | TS | triple-single |
| L | length of bridge | T5 | triple-triple |
| b | length of span of bridge | T5 | triple-five stories |
|  | long | V | vertical |
| ${ }^{1} \mathrm{H}$ | left-handed | W | wheeled-load class, wide-flange |
| Li | length, initial | w | beam (formerly WF) |
| LR | lift required | wo | without |
| max | maximum | wt | weight |
| mess | measure | yd | yard(s) |
| min | minimum |  |  |

## DEFINITIONS

Angle of repose

## Backspace

Bailey bridge M1
Bailey bridge M2

Bailey bridge M3

Bay

## Bays

Beam, distributing

## Blocking

For field design, assumed to be an angle of 45 degrees from the horizontal. The base of this angle starts at the toe of slope and proceeds upward to ground level. Placement of any load in front (toward the gap) of this angle would probably result in bank failure.

The amount of space available for construction of the bridge.
The original US design of the British prefabricated Bailey bridge.
The revised US design of the Bailey bridge Ml, with a greater roadway width of $121 / 2$ feet. Also called the Panel Bridge.

The revised, wider, British design of the Bailey bridge M2. It is often referred to as the extra-widened Bailey bridge and is not stocked by the US Army.

One complete section of a Bailey bridge, equivalent to the length of one panel 10 feet (3.04 meters) wide. The term bay is used regardless of the truss type.
Floating: Interior bays of a floating bridge that are located between the near- and far-bank end floating bays.
End Floating: Those which form the continuation of the bridge between the floating and the landing bays.
Landing: Those which form the connection between the end floating bay and the bank. There are two types:
Variable-slope - these span the gap between the bank and the landing bay, or the intermediate landing bay if a fixed-slope landing bay is used.
Fixed-slope - these span the gap between the intermediate landing bay and the landing bay.
Rigid: A steel beam securely attached to the top of a pier or abutment which is designed to spread the weight applied to it over a large area.
Rocking-bearing: A steel beam attached to the bottom chord of Bailey bridge panels. It is used to prevent excessive local bending of the bottom chord.
Timber used to support the junction of the first and second bays of bridge when building deck-type bridges without end posts. Also, any timber used under girders during jacking down of deck-type bridges.

| Bridge | Through-type truss: A bridge with a roadway between the main load-carrying girders. <br> Deck-type: A bridge with the roadway on top of the main load-carrying girders. <br> Broken-span: A multispan bridge with the top chord broken and the bottom chord either <br> broken or pinned at the piers. <br> Continuous-span: A bridge of which both upper and lower chords are continuous over <br> intermediate piers between abutments. |
| :--- | :--- |
| Chords |  |
| Cribbing | The upper and lower horizontal members of a Bailey panel. <br> Grillage placed in alternating layers under the roller templates and bridge baseplates to <br> provide the correct horizontal plane on which the bridge is built, launched, and positioned for <br> trafficking. |
| Decking | Laminated: Timbers laid on edge and nailed together horizontally, and then positioned on <br> top of Bailey panels to form a type of roadway for deck-type bridges. <br> Layered: Roadway on deck-type bridges comprised of timbers laid across the trusses <br> perpendicular to the bridge centerline. The second layer is placed diagonally to the first, and a <br> third layer (optional wear tread) is placed parallel to centerline. Sometimes referred to as deck, <br> or flooring. |
| Grillage | Standard: Square-cut timber positioned under the Bailey bridge to spread the weight of the <br> ridge over a large area. The Bailey grillage set has a fixed number of two sizes of standard <br> grillage. |
| Non-standard: Timber other than that supplied in the Bailey set. This timber must be at least |  |
| as large as standard Bailey grillage. |  |


| Pier | Floating-bay: Supports the floating bay in the interior of the Bailey bridge. <br> Landing-bay: Supports the shore end of the floating bay and riverward end of either the fixed-slope or the variable-slope landing bay. <br> Intermediate landing-bay: Supports the shore end of the fixed-slope landing bay and the riverward end of the variable-slope landing bay. |
| :---: | :---: |
| Placement control lines | Used to ensure that the rollers are placed and leveled accurately. |
| Point of contraflexure | The point where the downward sag of a girder changes to an upward bend as it approaches an intermediate support. |
| Roller clearance | The distance between the center of the rocking rollers and the center of the bearing on which the bridge end posts will rest. |
| Safety setback | The minimum distance that a rocking roller is placed from the edge of the gap. |
| Skidding | Moving the bridge or a single girder over greased timbers or steel beams. |
| Spacing | Lateral: Spacing of the rollers in rows across the centerline of the bridge. <br> Longitudinal: Spacing of the rollers in a line parallel to the centerline of the bridge. |
| Span | Lift: Connects two adjacent floating bays and provides a span that can be lifted vertically to allow passage of water traffic. <br> Draw: Connects two adjacent floating bays and provides a span that can be split in the middle and the two parts pivoted upward to allow passage of water traffic. Connecting: Connects two adjacent floating bays where barges are grounded. |
| Supplementary chords | Upper or lower chords used to reinforce a Bailey bridge. |
| Temporary launching pier | A pier used during the building of bridges with an underslung story. |
| Toe of slope | The point in the gap considered to be the base of the bank. |
| Underslung story | One story of a through-type truss bridge that is below the level of the roadway. |
| Wear tread | Lumber laid across the chess of the Bailey bridge to prevent damage by vehicles crossing it. |

## REFERENCES

## REQUIRED PUBLICATIONS

These are sources that users must read in order to understand or comply with this publication.
Department of the Army Pamphlet (DA Pamphlet)
${ }_{736-750}$ The Army Maintenance Management System (TAMMS)
Field Manuals (FMs)

5-34
Tables of Organization and Equipment (TOEs)
0507771200
05077J200
Technical Manuals (TMs)

Ensineer Field Data
Pile Construction
Engineer Panel Bridge Company
Engineer Panel Bridge Company
Military Fixed Bridges
Operators Manual for Truck, 5 -Ton, $6 \times 6$, M809 Series (Diesel)
Operators Manual for Truck, 5 -Ton, $6 \times 6$, M939 Series (Diesel)
Operator's, Organizational, Direct Support and General Support Maintenance
Administrative Storage of Equipment
Procedures for Destruction of Equipment to Prevent Enemy use

## RELATED PUBLICATIONS

These are sources of additional information. They are not required in order to understand this publication.
Department of the Army Form (DA Form)
Federal Supply Group (FSG)
9100
Field Manuals (FMs)

|  | $5-1$ |
| :--- | :--- |
|  | $5-25$ |
|  | $5-36$ |
|  | $55450-1$ |
|  | $101-5-1$ |
| Lubrication Order (LO) | $9-2320-260-12$ |
| Technical Manuals (TMs) |  |
|  | $5-210$ |
|  | $5-232$ |
|  | $36-230-1$ |
|  | $43-0139$ |

Depreservation Guide for Vehicles and Equipment
Identification List (IL): FSG 9100, Fuels, Lubricant, Oils, and Waxes
Engineer Troop Organizations and Operations Explosives and Demolitions
Route Reconnaissance and Classification
Army Helicopter External Load Operations
Operational Terms and Symbols
Truck Chassis 5-ton, $6 \times 6$, M809
Military Floating Bridge Equipment
Elements of Surveying
Packaging of Materiel: Preservation (Vol I)
Painting Instructions for Field Use

## INDEX

Hote：CRS－Cahle ramforcoment art

## Abot ant

Ceparily， 31
Condition， 35
Excavalion of（for dech－type brider），ta\＆
Prepared． 35
Unpriphardi，36－3］
Abemer rouldel for orlifit）， 31
Adapter（CRA），1才4
Amelror line pall，I7z－1 To
Anchorng 4 ， 87
内＂ehoris ine Arrhorg gat
HFropeh caidiat 112
APPFoneln zoedr．31，263－285
Aurahly pertris．See Work purtien

Aterebly Liarn． 35

liniley berider 빈 2
Baliley behdito $\mathbf{H}^{2}$ z
Adrastaydth 2
D1＊
Deprati evilugtian，481－283
Detruction 2.292 .28 ）
Diamantling， 284
Expedinnt midepiag，est
Hintary， 2
Meintenmencr dateil， 27 B
Parte comproition 2
Feplacing． 284
Suaritin milded， 2
Bathey brifleat MS．See Eatra－widened Briloy bridge Mi人
Banlu（）
Curdition of， 3
Heightion， 2,37
Quplatien metatal，31．264
slopt， 46

Anchoping，275
Cepacity，258－259，281
Derigu，258．269
Equipmeal， 243

Landins methods，266－288
fibn，259， 286
Selection end procenting，253， 235 －265
Bree plaled ${ }^{\text {al }}$
Bnder vinda on， $\mathrm{yn}_{7}$
Letrimbtanc．12
Holelit，䧕
Lacation，2， 12
Poothonipg of tipading byy），870
Foilyr layoul und． 736
Siaglonlory Mi bridpr and， 136
Whe \｛ramerali\}, 12

## Bny land， 26

Banringly
Converting maste to twotame bridge，124－125
Crib，21］
Lecti－type bridge rocker，134，149－141
［14etripthon，2， 12
Landurarlay， 270
Lactlion， 2
Prilony－bridga nochar，148， 180
Eimplequary bridge jpeching，各？
Eloragt and tramaport， 27
Une（9\＃\＃neral）， 12
Bhvppec ofle．Sl
Blalkot candilion．See Nipht driviag
Blonk mid lacks
End on masmbity， 241
Wovable platiorme and，235
Bpectal upach thod，251， 263
Underalung atory added with，1I］

## 


Detcripthon， $1 * 8$
Installaton．177－j78，142
Remotral，187
Un9． 168
Brecep（CRS），Set Popt brectal \｛CRS
Brocing bah
Description， 10
पее＂， $910,86,156$

## Hrichay detall 34

Braciny Irmace
Bramir bolle and， 9
Bridge reinforkemkat with， $15 \div 156$
Convirting tingle－thor bridye，91，yo－100
Convirpwetrhth， 205

 140
Deatription． 9
OT bridqe notembled with， 10 IT
Extra－widaned hrider anembled with， 131 132134
Panel nib pien，210，223，227，229
Finilway bridge enaembled with，14＊145， 147.148

Fialway beid fe taunebod with， 151
Sunsto cirder latenched rith，245， 247

Storage ald trantyonth 27$\}$
TD bridg An＋anhbld with， $0 \%$
Twa－tunt hridga enerabled rith， 122
Use（甲enarel），2，9
Bridgm，Montiog． 3
Bringe boandariplete（CRA），180
Bridye ltagth．See Length of bridet
Bridev loodion，31
Bridfo nidetyors，See Markern
Bridice parto．See Prut
Bridge－dent rettern（CBI），173，IBI

 raconnaikuncs

Bridrap an lyprget
Advantages and dimarnplegen，2011．289
Anchor－ipe，272－275
Bare melection，285－2B6
Cundruction，upecial，270－273
Dentan and cupacilien，258－280
Fluading piers impportingh， 267

Hridgies on ba riker－rombirand
Mainteasace detal，275－276
Ktufte， 276
Site layumi．2mis



Supergiructure：parta，estis
Whult perchen，265，275，
Br｜figation piera．See Braken－upan bridget；Cianlilever bridget：（＇ondinuaun－apan bradgets

## 

Advanatacs 190
Anchonac， 20$]$
Leucriphian．เที）
Intermedizio Aupporte of，150

Catole reinforcepmant set

Componante，LET．176， 173175
TJammlicions，294．295
Deacription， $1 \overline{\mathrm{~B}}$
Diamanding，JEE－IET
［ratallabion，159，175．185
Lubricatiurr．เH7－184
Muintensnce，187－1边
Sthirment，bis

Tranépartacion，a $\mathrm{H}_{\mathrm{N}}$
J＇roumbeshoating，Es
Uup in apecial enviranmerta， 187
C．sble－conmection beam（CHS）
（＇inhle and，1K2．184
Deacriptiun． 169
［autallatron．［80－181，1B4
flemeval，Lis
ปョே，1F3．170，175
L＇sblt－resl shof（CRS）
Deverpiplant lif
［lsee，189，］T］
Cable－tanaing gage（CRSt
Dameription，！Ed
Locntion，159，184
Uwe，LES－1R5


Detrciption， 159
Harce replaczineter IEx
Coble日（a：25）

｜anstollation，LSt 2 A4
Numhar of， $\operatorname{IE9}$
Placamedt in， 179
Retrieval， $183 \cdot 137$
Storake and phacemrent． $16 y$
7＇equianing，t59．J8t186
Cunlikerer brideten，Zub－id08

Cinrtyling ber，Iti
Corrylmaz tonge，18 1 ：

Caytion cranmiagn，ith 112
Chesen
Eridgen on barget． 259
Broken＇span hridge avermbled valh， 1 ly，
Deck－Ly un badre asseinluled with，140
Deskrplivi，2．10

Expedtent use of．＇zU5
Eatra．widepud hridgr：asacmbled with，130，134－135
Fxura．widened bridge bny aneconbled with， 134
Fixtra－widened bradge heanched wath 132 134
，Fuaction，191，215， 259
Nuraber per bay of， 10
Hailseny bridge ammenlied with， 145
Rump－ent unpwer．5x．fs

Single givier Ifanchior with．eatb
Singlt－itury bridge bis）asdenthlind with，7k，83
Slaglontory hridge launched with，R2
Singlantary bridga semp，Rs

## Chordin］

Deas：nption， 6
Teinforcong damaged，26］
1 Felding damuged， $2 H 3-2 \mathrm{H}-\mathrm{d}$
Stopplementary．155，283

## Chorda boltolver


Dequcription， 1 is
Rowitwoy bridge macmbted with，ist

Churd jacke Stee fachíj
Chord plate（CAB）LE8

## Cltwufiritation

Brokell－ypanit bridefe，193
Cuntinuountipen hridyw on pier．Lsykytul


Dack cype bridgen，Ji人f
Exiating，54
Extra－puidened bridgre，lik
Increaved by adued stories， 91
NA＇M aigno shoming． 112
Hailway bridyr， 145
Efeinfurved bridze，155－156
Twitlon＊brider．2］4
Charame gegen， 144

Conapcting parta， $859.251,263,273,2 \mathrm{~N} 2$
Connociveg epang．Sar Span（a）
Canntruction rollern，51，57，5\＆ 65
Conkimuoge－span bridsen
Adventaymen， 198
Ausembly． 158 －20］
Jacklug．20H
Linamehumg，203－206s
Handengrexe，21m4
Piar reantiag， 201
Convernion afl Nd，3，pmorl erib phar M2
Bridges on bargen， 287
Broken－mpun bridge anneorbled with， $190 \cdot 19 \mathrm{~L}$
1＇ats，19，2］5－219
Tranepurt of， 19
Uuex dgentofld，เ4，2］5， 222
Cooperts E－46 lowding， 140
Countartalapres．Ros Chuntroneightid？

## 

Councrobalance and，tirl
DD briage lanched with，94
End－on anmembly and，239，这l
Fixed aod marable（ralling）， 235
Laumehing nose and，296－239
Luunchiny fintle risder mith，245，247， 249
Luynchioy tail and，2）f
Letrhehiag without roklera，341

Counterwaightis）－continued
Restricted oftat find 285－23：8
Siagleatory bridet leanehed with，ot
Special sppan lexnched with，2＊3

## Crping

Bridese on barpes， $\mathrm{q} \% 3,270$
Empiocing deck－lypa tridyt gipdern，141．142
Emplosing railway bridge pirdert， 152
Eind－on answibly with， 238
Panth dibl pler emembled with， 231
Shefle firder laybethed tith，251－252，246－245
Tonplestory bridgt atembled with，102，107， 110
Unloeding bay loedr with， 29
Cylb beate 2：27
Crib lapering，218，224
Crib ceprill
Cbord dampand，216－217
Crib rocker bane and， 294
Dosaription，21B
Improtised，225
U 41215
Cribling．Sot the Grillagt
Bant－blope diffrimeta and， 148
Brokrerpan bridere converion and． 190 ． 191
End traneomernport， 54
Grillage med mas
Jaching dawn，87－83，254
Phot， 263
Ponton，241－243
Rang midapen fupposth 52

Cribe ga barget．26？

## Crope brmeing

Deck－rpat bridja enpectiant anemplly andi， 146
Railway hridge mpedinat ansepobly and， 151
Crosaing rembriction．St， 112
Celvarta，184
 And Equipmanih， 188
Dhatimed bridget

Clate ather reinforsement，291－283
Evalowton of damatye． 281
Frivinforement．2EC


Sheur and mument diarribullon，279－230）
Weiline，288－284
Deeking
Berpe． 249
Dete－typu bridgt，129，affe
Dascription， 2
Detpil， 34
Expediant exnitruction，296， 290
Laminated， 139
Layerod， 138140
Derk－lype brididete）
Advantafte and ditadvanthath， 136
Atoembly melbede（expediant），1－10

C．
Derigen（expediants） 138
Deiga inecomsanded）． 142
Leunchiaf．141．142
Demolition
Bridpa，298－208
Guble aek，290－2RS
Wethodn， 292

Blacted equippentut， 294
Detruction of lidige，perte，and coulpment，See Bemalition

Diked enpinla， 241
Dimenating
Bridyr with cuble act，188－1BT
Standard bridye，294
Dintrinatinf betio（rocker－bearimy）
Continuouerpan bridare an pher，189－2071
Dectr－typt brides manembly， 140

Two－len bridge launched mith． 12 z
［houble－action hydrantie eylinder tCRS；
Cabletensioning atembly and， 109 ， 174
Deacription， 175
Dinenambly， 188
Inatallation，IBA
Operation，184－185
Eletained on puld rod， 173
Unoes，170－174

Double－story bridet
Atserfably Ma4thoris． 44
Convarting IDS in． 99.100
Thoutietrusp， 94 （96
Extra．wideand bridge ancombly nad
Lennching， 155
Jucking dawn， 99
Lanembing，34，时最
Latorting－note compoaltion， 87
Eivinfortione 89
Taplortwes， 87.98
Dram apshan，Str Rpan（ $(x)$

## Ead port

Byokenapan kridge ppas lauschad with， 198
Counlurwaight mil nad，235，27i
Deck－5 pe bridyr remembled with， 140
Description，2，I1
Dismonling， 244
Doobloralory bridqe loumebed with， 3 ：
End－an thearably with， 241

Jatiaf， 12
Landiaf hayn and， 270
Lanoching wilbout rollore AEd， 241
Location， 2
Mnlrand famelt． 11
Pier prepared with， $2 \neq 0$
Zailwny bridye amomblod with，14才， 148
Siagle giver Jmunched with，247， 250
Siaglestwry abembly with，72，到

Binglombry launthing with，57，247， 250
Stotate and panaport 278
Gupporthas
Uuetannerplo，II
Ead on meferibly．249，24L
Epgineser aqnipanit park Ser Equipment park
Equipronit，panel－brldy＊

144
Expedsal etruclures， 3
Expedieat ueen，286，289－291
Special atructures， 3
Une（bormall， 54

Equiphend park. it. 32
Erection plationich, 94
ET0 (Eurapaes thanter af opernitans), 142, 151
Expedieat nirneturea
Ciaucways, 290-291
Deckins, 283
Gentries, 3
Loediog hoppers, 3
ranel box unchers, 291

Extra-wide vebitelea, 136, 2246
Exirarwidened Falley bridge Ma
Clowe, 129
Descriptian, 12 A
[loubleatnry bridge feasombly fod leonching. ]:is
Crlllaga, 136
Origin. 2 12\%
Parta, 130-131
Famp eupporta, 139
Singleatéry bridge natembly and hunchiag. 132-135
Special pwrty, 130-131
Triplealory bridse unerably and launching. $1 \mathbf{3}$,
Field derised procedure, 36-37, 45-46, 14-55
Fined pierts Ser Piers
Proatina bayta), 263-230
Ploakint brldgen fte Pridge, foating

Footwallasy
Beater. 13.14
Imampion, 2, 1 ?
Exira-widened bridge lauarbed with, 132
Post, 14, 73
Singleatury thridge, 7a, ir $\cdot 82$

Framed beala, 190
Gap
MeqfuNatheith 36
Wodth. 31,109
OCP-GREASE, Gianeral Purpoet, 189
Gantrien Sos Expedient ntrocturag
Gin polm
DD bridge asacmbled with, OH
Single 区irder laumehed wilb, 245, 247, $250-252,256$
Triplestury bridge amenbled with, 94
Girders, 2

## Grillagn

Rewing plucta nind, 39
Description, 39, 45
Extra-widened bridge anembled wilh, 136
Final bridge length ard, (6-4in
Lasdiac. 255 .268
Nuncitandard, 45
Panel mit pier aet on, 210
Reblway bondere aspernbled with), 14 b
Renatorcod bedece, 91.92, I56-ISb

Rollar layout find. sk
Eylocting, 31, 36, 4s

Snil charecter and, ss
Guidea See Traffic guides; Appronct guidea
tanwale loading, 266.288
Guy Hian, 275
Harmanione vibration, 189

High line
Heiluray bridet launching expeinent. ing
Siaple cirder lat inchert wjith, $245,247,254$
Silngloatracy dek.type bridge lownehod with, 141
Hydraulic power unit nsoen bly (CRB)
Cable cenmioping amently and, נEA, 1 T4
Deacription, 173-175
Dinnexembly or, 1Ea
Operntion, 184.185
Parta redasement, l\&k
Pamered by, 159, 175, 188
Typee, 158
Ibdependent opatat Ser Spainis)
士-bemme, 211, 254, 259, 259, 291

Intermediate piers, Spe Piert
Inverued lownching noer. Spe Launeking boent

## Jracktel

Chord, 1 F
Hock-typt bridge anearrbly *xpediack, 142
Dencription, 16
UT firmt bay amembled witb, IVT
Fibolation Jauachine with, 242
Number needed, 38, 51.56
Pitah of teeth, $\mathrm{Jb}, \mathrm{Bt}$

Panitioning, Kl
Shof, ls
Siagte to swa labe bridge convervion, 124-125
Hiagk-stary hridge converrion, 91.92
Hiaplestory bridge hanching. B6-88
T'D bridge lannching, 109
Triple-atory bridise, 114
Two-lane bridere ansembled with. 123
Eroken-apar bridge on pier, 19t.140, gon
CRS untallation and yownual, IBO-1RI, IS?
Daflefed brolste. 289
Deck.lype bridge antembly, 142
Diamacting bridere, 2Ed
Doublentary bridge anembly, 99
Uloublratary dock (ype hridge Jaurehing. 111
Flolation latenchiag, 242-243
Flodativa-lay jaunthiok, 269270
Landine-bay launchinge, 289
L-aurciling DNationta, 249
Launchitis without rollere, 241
Palmel trih muer. 291-239

Singlegiverer launching, 200, 254.266
Singlontary bridge anagubly, zy
Triple-atory bridge anembly, 109.110
T'mohare bridge asaembls, 2b
Juaction chera. Sec Chesa
Junction limk(a)
Descriplion, 215
Paned unb eeuline. 211, 215
Jumethon-link bearinge
Cab recter bave. 3
Deactiption, 215
Panel int pier *nceminhed wich, 21/k
Panel ent rряцing, 2I]
Landing lat(a), 243.270
Lapdimerny piers, 210

Bridper on burgen, 275
Erokec-npan bridjean, 198-190,204
Continoove-apan briden, z01
Doublezhary bridye deaembly, 2 g
Two-lane lridge ofer crib piar, 23


## Lamashima

Broked－zpan tridge，194－18
By sindte cinder，245，247，250－252，254－258
Coblinwoud－aparabrider，190，209－204
Countioretimb and．143－244
Duckr－47pa buidat，14i－143
Doublumtory brididt，98－99
Eadian mprably，2t9241
Emtra－wireped braders，139．138
Floatiag－byy， 298
Flotation 241
lovented launching nome， $2: 39$
1－andine－bay．269
Pemel ifridac，45，232
Bailay bridye， 151

Spectal me4hodr， $238-239,241-243$
\＄tmpdead， 385
Eringivg，841

Withoul tolipre， 241

Counter＂eirbl and，236－239
Drektypalbridya， 141
Deatriplown，48
Dewicnung， 5
Dirppathin， 384
Doubleatary indigu．if
Invaried， 24
Laumebing \｛nortial）xith， 49
Unelane bridye os
Fieioforcing bridst with，ts 5
Singlentory bridge， 65
Sthare índer inumehed with，245，247，2sil
Tripleplory bridse，103，
Turc－lane bridte，115，124

Dutcreption， 1 名

Padiparint，49－0］
Single girdek lautched with．EsN
Tro－lese bridgo aternbled with， 122
Uses｜qeanralk， 18,49
Lamphing pier，temparary，Stif alao Underalung bodtom ntary

Rocking Jollern mased with 100
TD brrides lavached with，100－110
TV＇bithlys linached with， 107

140日echinf－liph eteenobly，H5，2036

Leyoul Set Site Layout
Lengeth of hridya
Compuling． 3749,4547
Grillige type mad， 45
Reconnaiknace report mod， 31
Rolder clearance and， 45
Truat torpe and， 15
Lat menna，Sze Spantior
Loud dietributhon
Borgwi．259． 265
C848：
Deck－tsper brid 44， 13 B
Eadon Enembly，241
Panel crib piek，\＄1t
Sofi mil and． 2
Landina boppenn．See Expediant atracturea
Loveliun of liringen Ser Bridgy locnion
Maximen allownhif alope iod hanky，See Slope
Marlertill 112


## Moblle bridses， 9

MOPP．Seet Miemon－ariented prodection pooure
Mavepert，Ifterial．See Lacirad movement preventhum

Niglet driving． 44 ， 12

## Owarpend brecing

Expediant， 109
Reinfarced bridge，I55
Triplealory linider， 103
Overhend－branim 4пppoart
Urescriplront 14
Eltra－willental brider asaembled with， 138
Eqpylemeneary chorde and，ISK

Two lipo bridge teteembled with．，1EJ
（rea dgennral）， 2


Pmbal bon machora，Seq Expedinet atruitured

Partal bridet entiveraion and No．3．See Converaion
No 3，patel cnb pier
Panol beidige，Baliey M2，See Bailey bridgr M2
Panel eluorde See Chords
Pqpel crib jiver．Sep Piqns，paral cnb
Papil detanl． 30
 Dewcriptian，6．7
Danble－stary lvidst anambied with， 94,97
IYT bridye biy manmbled with， 10 f？
Extrarwidand bridge arombled with，139， 134
Panel crib pier mombled with，216，218， 295
Bingir ctirdar lanached mith，24T

Sintlo－story bridfer convarted with，91－92，58－89
Sincioniory briden Linnthed with． 86
Singlethory bridpe lingnchung nose asambled with， 66
Starygt and tranmpari， 278
Pparllaver，16，91
Pancla
Certynge，6，If
Doecriplion，2，6
Extrovidened Th bridec maemiled with， $133 \cdot 135$
Patuel cnb platr，2j0－21I，zab
Feinforeiay damered， 283

Singlontory hridpe con werted math，91－gy
Single itapy bridge lounching noere abiembled with， 6
Strirage and tranapori of．7P8
Рати
Banic bridga nes， 6
L上W，162－170，173－17
Dentruction ot，252．294
Espedreat net of dumaged， 291
Exwa－widened bridete，130－231

Ponet crito phert and toberr（wpecial），215－219
Rallwny－bndse， $540-160$
Rshlintoresed－brider4，166
RAplacament（CRAR，1gh
Зрияp，279
Stornge and tranaport， 276
Phelets｜ricalk， 65

Phere
Alignment smd upunine of，เyl
Burce bridger and， 210
Broken－bpan bridico on．190－1 ！


Cribbing under，201， 204
Fized， 109
Intermediale，150－191． 210
T＇V bridge launctied onw．lug
Piers，floaling
Hayn exdported by， 20 N
Brideto on bergot and， 25 ？
Freparation of，2f8－269
TD brider lavinctral with， 108
Typee off 4 ？

## F＇lert，patel crib



Bills of opptorion for 220
Prdict Habing an，211
Eroknn－apan baidare supporled by，1，0
Comporemta oI， 210

Loupching bridgr anto， 232
Kapuching platioeme and， 239
Lond and anperity $\mathrm{Df}, 219$
Set，260
Speriel parke，215－219
Tripleftory bridge on，IN9－1 14
Tresa atandand nepernbly of，cor8－294
Түрен of，210－211
Unen， 210
Piar memerian，Sier Broken－tpan berotre
Pila bente， 193
Pin extrechor， 1 1t
Pitch of tevil．Ser dathior

P］akil rollert，fite depo Conatoction rollers；Rollar Joynat；Rollert

［位scriplion，16，of
Divmanding of， 284
Dis bridet videraluag aing and，IIO
Eatra－widened badpt arenpriled with，I32

Laymud（acariont！M2！，5」，江
Layuut idestivnt
Loud alluwable on． 15
Latoncatayn of． 2 Id
Number nowniter al．SI
Single girder lawacbed with．245，24i
Templates． 18.57

Plain actindera fiee Stanget
Platformar launching，230． 249
Point of contraflexurat ise
Pontoons－Set aleo Ftgits
C．antr：wny，29］
Flotation lauaching on，j11－143
Bingle nirder lamentied with． 2052
TIS bindge lownehed unth，IOA

Paal hrace：\｛CRB），668，178，169•134，18；
Prepared abuimante．Sec Abutmeais
Pallirod atarmbly（CRS）， 175
Pall－rod chain（CR8），171， 189
Poll rode 1 CRSk $179,173,182-183,180$
Ruflo．See afwo Pontuns
Mindges no borgan aud， 276
Caucwnyn mod，fol
Dectlilype bridge girder flolation on，1t
Reile，141， 145
Reilway bridyea
Advantager and disedy antagew， 144
Avsembly wethed（Aeck－typar），14t－150）

Clan oif， 145
Deacription，144－145
Fxpedientu for， $151 \cdot 158$
Laumehine or， 151
Katilway tied，144－145，148－145

## Hatere


Deacnption $\{$ N2f，A－9
Description 1／Mist，L30


$t$ aned crib poer brecinge mith，216． $2 \times 9$
Exilupy bridga ；membled with， 150
Singele ginder trunctepd with，2sit

Singlo atary boidge aseerabled with， $65,71.72$, B9
Sporage and tranepurt of，278
TD bridge asierm bled wjth，st
Two－lano bridex oturembled with．12A，das
Underelung tiary launchat wich， 111
tha（gavaral）， 29

## Hamp pedealal

［berciptiven（N2），14．is
Deectiptan（ $\mathbf{( M 3 )}$ ） 131



## Hampe

Buttom， 12
Dewcripkian． 2.12
［hemendinte ot， 284
Ploin， 12
Reilwaybridga 148
Siaghontary bridyt， 88
Slope of，2，55，56，58
Smpporif for（（K2），52， 55
gepport for（ 1043 ）， 136
Throasthype bidics，258
Two－land bridge clanrancy nad， 1 IS
Uet（froerd）， 8
Une erexpedient bridet pirt cap，280
Weigbtoa， 52
 reconomisanare


## Reiniorelan

Demaged panal and charin， 283
Drouble－4ary brident， 59

Twolahe badques． 12 d
Restritied alter， 238
Petrectable bridege， 3
Ritubady
Jmberiptoa（M2），bit
Descripisa（M3）， 130
Booblentory bridus lavoched with，sis－ 99
Entra．widenad heldga nanmbled with，130，135
Single ginder Lanchod with， 258
Џuen（general）， $\mathbf{t}, 1 E 5$
Ribband bolt
Deck－type bridge decking with， 129

Riblanad builu－condinured
Description， 10
Expediest pancl crib pier anearsbied with， 287
Une（ $\mathrm{H}_{2}$ ）， 10
UBe（M） 3 ，30
Atylu ekoselint．56， 112
Riali koedr，5fi
Ropdwhy width
Derletypthridga，tis
Genied ar NATO Eignn，II2
Rocleer becringar $22 \sqrt{3}$
Ronching mollpro．Say alar fitillogr，Flan rollers；
Kor：Ling rribet templatex；Rallar
Pridge laursbed over crib pier with，2：32
Cable reiniotcenvent and，1HL，187
 $169-201$
dogntervenght gecured with，85－94i

Lill bordye ussentbled with，su

［hamentlang．2H4
Fioping bridec launched with，69 74
Flatntion haurching with，2sit 241
I．anding bay launched wilh． 289
Leunching plaborme on， 239
Lamallowable on， 15
M2 bridge Jaunched will． $15,39,51$
Number veeded of， 31
Siarery sethack wal．int，ה7
Sindle girder launched om，244，247，24x




Stockera
Bndgean－picr， 199.0255
Panel crib piec．2ll，2：34
Kuckiny－roller temphalke
Cable sinforvinuart wirh，INJ
Lleatiphion，bs，5iT
Extrex－wadenerd brbize nsamplited on，lizi2



## Fibller


Heighta，69， 98
Layraut，35， $57.59,245,247$
Rollers，See Main rollerr；Rocking rollane

Anzat themelve
Caifvertint of DS bu DD bridge and， 989100
DD toldea atyombly ohed，94－93
SADE toingle－mile lond equivelentak，206－207
Ghper
Hridga damage affect an，281
Maximburs morrantend，efll
Moment dintribution mad，279．980
Shart panel pin， 7
Single－mily lôd equiralaniaj）．See ThLE
Gingle sirderts See Launching
shatio－atory bridere
Arpentbly wethodz．71－73
Converting eincte to double－kracs， 91
Convaptirg dioubto to thpletrute， 92

Jacking of，87．3
Lavechive of，BS，B6－87
Lemachiar－nome compcition for， 84
Humparint 88
Hesinfarinte， 91
Antembly of triple－trucs，BS
Site isyout
Hridjum or botrea $+\mathrm{Hd}, 255$
Clearing e， 72
CRS muamblien and jefts ond，ITT．183
Locktion of， 11
Stacha erranged on， 32
Width of， 32
Hita lucelian．See Site layoad
Sla preparaitorn
Hotidere an bargen and． 355
Faceonsuiesance report and， 81
Scepe． 36
Tima noeded for． 34
Site rarpanadelente
Eridges on butg＊＊HRd，254
Officer， 11

Ftalimanary data fux， 31
Fimpon，21－42

Fantricied prtap
Shidding bemmen，241，250，254．258
빈ape
Bank， 45
Brider， 31
Bamp． 2
Snobloby tachle，245，247，250－252

Sodl chpprectar

Rampeod and，5 5
Sale bearing prowers ond， 45

Apan jubetian poale
Bridgen on bargen actembled with，259，26t，287 2T2－273
Brolth－tpan briden ansembled with， 211215


Spen humethon pople ICRBF
Cableconmaction bquon and，1\＆1， 1 E4
Desecription， 175
Inatallation， 179 ， 184
lantallatian of C＇R马 with，15A
Pemoval uf，1E7
Uate（cemerall， 175
Spand
Connaryint，登分

Irdegpendent，190
Liti，271 272， 775
Witbout and poam，2解
Spare parts．SeR Farta
Special lemaching mothodn．Sect lounching methonts

Strimert
Briders on bargee namembled with，259，2j7

Thect－type bindige absembled with， 140
Dabcripthoh，
Estra－Fidenid TS bridee bay anotubled pith，
139114

Sitringers－continuod
Launching mithert rollote and the of， 211
Number per bay of， 10
Flain，10，130

Singlo girdar launched with，255－258
Single－alory bridge assembled with，133－13／4
supplementary thowide－Sut Churdo
Bway hrace
Demaiption（Mri）， 5
Utactopion（M3），131
Extra－widened brider aymembled with， 136
 220－209
［nvorted lausehing noes and，289
Fanel arib piar acembled nith，210，2203，228223
Fuilway bridge assembed with， 148
Single givdar lau inched when．ans
Singlestory bridge unembled with， 65
Singleatory binder buy nseembled with．Tl－7s．的
Fiturage and trabapont of，27s
Tenaianing． B
Triplestary liridye entunubleil with， 2 the
Twa－leve bridet avembled with， 122
Usea（enembl），2．H
Sway－brepet turnibnekje．71．73
Tecklo，See Eflock and tackle
 Tin plplea

Converting ningleatory bridge wilh， 92
Dencription． 9
Expedient panel crib piet anvernbled with，299－22s
Exera．widened blyglestory budga atoembled with 1：4
Panel crib bracine widh．210． 223
Rentway bridge pesponthed with．144．145， 148149
Resoforcing bridge with， 155
Single Eirler launcheol with，248－247
Sunglastary hridge bay anembled with．71， 89
Sharage and transpors of，Z75

Two lane badge annemblod with， 122
Uses igeneral）， 9
Thas．Rine Enilway dea
Thaber blocking， 140

Timber eriblidita 39， 54

Expedsant ues of， 2 Rg
On buycen， 259
Panel ent plest and， 216
Timber derkinf（expedient）
Bridge on crilt yerr whit．21h． 2
Deck type bridge ansembled with． $13591 \$ 0,266$
Phitway bridge amermbled with．145， 151

Timber grillage，3f， 45
Thaber packidg
Eind－an anagmbly and，239， 241
Underalung nory added with，III
Timber ntringert
Broken－ipan bridere areabled wilh，I！ 1
Expedienl detkinf， 245
Timber irentla1，191， 284

T $n=$ of fioper $36-31$
Towern Ser Expediesl mantures
Trufte
Griden， 142
thestriclions， 112
Vibretion，1砬
Tranacam rlatipe

Detaription（ $\mathrm{H}_{2} \mathrm{C}$ ．A
Dextiptien（M3． 130
IVT bydte tacem）ited wich．int
Fxup．undened bring＊annemblad with， 133134
Railway bridjo ansmbled with， 145
Single shry tridge ansembled with，7h，E：
 6
Traneondetnil， 34
Truntuen ruller，15－16

## Tyencam

Carrying． B，If $^{\text {If }}$
Canvertug al usfaratery heidige with． 9192
עencripuon＋M81，7．B． 57

Llauble， 150156
Expeditnl pavel trib pier $<\boldsymbol{\varepsilon y}, 226$ ． 224
Invertind laumehing bofe and，2；19

Nimbere par bay of（M3），178
Panel crib piver beaciag and，210，229
Plocing， A
Powitioning 4MEf， 2

Railoray bridga ausw bled with，14n，148 1；0
Single enrder launched wrtb． 256

Single－story bridgr fuucchad wilt， 87
Singluytary bindyelaunching nuse anowobled with 65
Spscing． $\bar{B}$
Sparing recking rollera with， 57
Spant withoul end woute anad，zbyy
Smpporting ranapa with．$\Delta x$
Supporia for， $345:$
Une（enemal）， 2,7
Triple－doultid bridef whasthby， 97. gy

Triple－rintle bridite anembly（W3），133－135
Triplon－ntory bridget
Anembly of，102，10\＆－111

Aracmbly and and launching（ba）of triplotruen， 135
Arasmably of dmatiatrana，tof
Estra－widened，list

lumenhing，Iffl Iff
Lanehior none comparition and，JXI
Overbead braciay $\quad$ वл， 103
With undernluns btory．IT？

## Tructis loads

Banic tridge act， 19
Crib pier．191，29
CRS，If0， 2.4
Movement of， 35
I＇ruwe bridge．Sive Byiluy knder M＇
Trucalay
Claay determinatien of， 38
Noeded type of，涪
Fonel crib pier，22－23
Typutal al
Turnarmund want 31，32，35

Twaslane thrangh-iype bridec

Aganmbly tinte vl. 122
Cland of, 114
Converting one lave to, 124.125
Deacriplun, 114
dachngy of 124
IJunching of, 121
Idmintion al, 114 Parts and uparen, Ilt
Meintorciug, 129
Raller layeut, 102
UEE, 114
Wark partice, 152

## Endersluan botion mary

1)uuiveswry bsidge midh. 1101 Il

Triplestary bridge tidn. 140. 142
Tunthone bendige Ianforsall with. 123
Unkandiag pariy. Sec W'ork partien
Unprepared abulmenla, See Abotmeala
Verkital vixar anceth 109. 24:

Wfar tramda
Dech type bridge dayercoldeching, 130
Depth ut. [सH
Ibaipllation af, 3-3in
Feinforciag decking with, 51, 99, 259
Widill af (thet sap. Sce Gap

## Winch line

Raidway lridyr luyacheid will. 151
Two-lint berdge laumined w, th. 1-2;
Warkongh datsihn. Aive Kirfly procian
park partien
Asaembly of, 43-35
Balqee-0n-b未rxer 365, 275
Ia unching with msuntarwaighe and. 2at
Ore lane brider amambly and, 32 in
sliagle-girder lavoching and, 245
Tmo-lane bridge assembly mad, 112
linjouding and diz. y

## Wresehre

Hanir bridge met, 18 CEB, 175

By Order of the Secretary of the Army:

JOHN A. WICKHAM, JR.
General United States Army Chief of Staff
Official:

## R. L. DILWORTH

Brigadier General United States Army
The Adjutant General

DISTRIBUTION:
Active Army, USAR, and ARNG: To be distributed in accordance with DA Form 12-34B, Requirements for Bailey Bridge (Qty rqr block no. 658).

## APPENDIX A <br> OVERSIZED TABLES

Pages 297.1 through 322

:




Tablf A $\%$ Componcnte of a panet bridze，Bufky
type M2

| NOMATMCUAlURE | HYERAGE UNIIT WEICHT （ H ） | DUANIIT | TB／ WIENT （lb） |
| :---: | :---: | :---: | :---: |
| Beater foolmal | 21 | 10 | 1，140 |
| Boil．biaciad，widge | 1 | 1．200 | 1，200 |
| Bidi．tammettal incra | is | 400 | J，000 |
| Borle end－pasi．spurs | 075 | 24 | 1a |
| Boti．ntiond．cuardrail］ | 4.5 | 40 | L． 3100 |
| Brace．sway | 6 | 64 | 4． 352 |
| Chess．M2 | 65 | 146 | 21.840 |
| Clamp．Alinsiow | 7 | 500 | 4.200 |
| Fodtwalk．alurmuithsisy |  | 40 |  |
| Foutwith． Cood | 10. | 11 | 3.328 |
| Frame bractict wist | 14 | 64 | 2.1516 |
| Nui plain，Maratun |  | 14 |  |
| Panel，truss turly | 577 | 119 | 73．010 |
| Pedectap ramp | $9]$ | 14 | 1，488 |
| Prefel，steril | 12 | 10 | 480 |
| Pm．cenectior．paral $8^{6 / 10}$ | 2．） | 400 | 2.405 |
| Pin．cannectal pankl． $7^{3 / 10^{-}}$ | 58 | 38 | 220 |
| Pin．smat－bisce | $1]$ | \＄0 | 55 |
| Plale．wrs．Wexing | $3{ }^{3} 1$ | s | 3.048 |
| Plate．lie | 15 | $4{ }^{4}$ | 147 |
| Posic end．lemale | 130 | 16 | 2.080 |
| Posi，end．male | ［2］ | 16 | 1.936 |
| Poci．lochuily | to | 30 | 800 |
|  | 12 | 64 | 1.048 |
| hamo hulian | 348 | 16 | \＄． 56 |
| Hame plan | 338 | 31 | 10.816 |
| Hetainer wider pill | 0.13 | 1．006 | 130 |
| Rulasand puardrall | 152 | 4 | 7.376 |
| Hapt，manla，\％ | 7．510\％ | I | 80 |
| Strew cap，henamadio |  | 24 |  |
| Shot．bearme， $4 / 16$ | 58 | 16 | J．CAE |
| Stainger，tultee | $25 i$ | 16 | 9.612 |
| Stainetr whin | 260 | 12 | 18.720 |
| Jape luminous $\mathrm{J}^{-} \mathrm{x} 50 \mathrm{yd}$ |  | ？ |  |
| lrımunn．tiesile | $61 \$$ | 5 | 34．50］ |
| 10，4 |  |  | 233.400 |


Bation type Ne

| MOAMENĊATURE | CuEMOAEE UNIT MEICNT （（b） | ПUג부TITY | TRTML眐栕以 （ib） |
| :---: | :---: | :---: | :---: |

MOALMCZATURE
Bue．Biley bume parls and 10015
BW．curime
 Bloct．driple．Por I＇ajpe Bloch．shach．18s tive ropt Eatractor．pin
Hamerr．ralimer－taced
 Jack．raltimet lenti． 15 ton
Jack rthond
lete．panel
Liak．launchind wose．Wh II Lumber．solfmod dimension

$$
5^{-}, 6^{\circ}, 16^{\circ}
$$

Lumbtr．sollmoted．dimensiod － 4615

hollor．plan
Roller，rocking

Wope sisal，Lustancy bix $x$
Mupe．sisal，s＋ $\mathrm{A}^{2} 600^{\circ}$
Hapt．sisal．I＇ $1600^{\circ}$
Shacke．ant mef－1ype
Shat．feck $4^{3} \mathrm{~S}_{3}{ }^{2}$ high
5leder blocksmith．目－1b
Spike． $\mathrm{JCo}^{-} \mathrm{g}^{-}$
 1＊mplate plinctoli\＆1 locig．रariying bladgreterand Wedet．
Hirs ride acsambly sidelt－lat Wranr．l ratchat，ofacrsible，with

1．a am J＇t ppckets，lqi ！a＇ and Jiv bolls
Wrancle seckst，aliset got th
 Wremeh，sirurtural．Jlit．Iar is bolls

I：

Eaidey type sitz－continued

| HWHEMCLITGRE | AUERIGE <br> ปNII <br> WEITH1 <br> （16） | DURM「ITY | 1014 WLIth？ $116 i$ |
| :---: | :---: | :---: | :---: |
|  bolis | 4.7 | 10 | 14］ |
|  | 5.6 | 40 | 224 |
| lotal |  |  | 22.925 |

 panei crib piet，fiakd Mit＊

|  | ```HMSHOS \WIT WElGHI \|b|``` | QLFANTEI |  |
| :---: | :---: | :---: | :---: |
| Aar Lianspart | 1 | J14 | ＊1 |
| Bealime．cirb | 37 | 24 | EkF |
| Beganc．moction－Jink | 217 | 6 | 1.302 |
| Boll．budile | 1 | 36 | 36 |
| Poll．chaid | 75 | 1 | 60 |
| Wate．sady．Mz | 58 | 12 | 816 |
| Capsill，：rib | 25］ | 12 | 3.017 |
| CH5s．Junition．M2 | 143 | 4 | \＄96 |
| Clamp．zhors | 11 | 32 | 352 |
| Clamp． T （2nsnm | $\sqrt{5}$ | 1） | 37 |
| Clip，tilainel，stisl | 213 | 208 | 26 |
| frame．bracing | 44 | 1 | 175 |
| Link，junclice | 36 | 6 | 215 |
| Link，launchimg－nose，intil | 23 | 4 | 168 |
| Pin．panes | 6.1 | 120 | 732 |
| Pin．sterr－tatice ispare） | 1.1 | $t$ | 2 |
| Plale．lit | 3.5 | 14 | 55 |
| Posl．Jutection．suar．lemale | 202 | $t$ | 1.212 |
| Posi．Junctoon．spum．make | 194 | 4 | L．L64 |
| Rbiel | 22 | 16 | 352 |
| Iôtal |  |  | II．4311 |










Tabie A y Furmulat for compufing ntrmber wiparta and aparen for turn－lane hridgen and neraen

| PA．T |  |  |  | FARMuls：MJSE SPARES |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | ＊lpaes | dN． 2 | 2044 |  |  |
| Bearint |  | $\begin{aligned} & \hline 8 \\ & 17 \\ & 17 \\ & 14 \\ & 14 \\ & 14 \\ & \hline \end{aligned}$ |  |  |  |
|  |  | $\begin{aligned} & 17 \mathrm{~h}-\mathrm{L} \\ & 24 \mathrm{~h}-14 \\ & 30 \mathrm{~N}+14 \\ & 36 \mathrm{~N}-20 \\ & 30 \mathrm{~N}+24 \end{aligned}$ | 25\％ | in +1 <br> tn <br> 1 <br> t－ 36 <br>  | 25. |
| Cell raed |  |  | $10 \%$ |  |  |
| Bol．ntuand，purdiaio or curt Arouge Hamp | 㑔｜pprs | $\begin{gathered} 6 \mathrm{~K} \\ 61 \end{gathered}$ | $10 \%$ |  |  |
| Brace．5way wo putrmas buatrily $n$ ovelend buche | Allipes <br> DE－｜p｜ | 4N <br> 8n． 4 | 10464 6 | S3．DS and DS－ 00 ln ：iest An | Lur 2 |
| Thess <br> Bridte <br> 月最 | atil lypor | $\begin{aligned} & 964 \\ & 104 \\ & \hline \end{aligned}$ | $\begin{aligned} & \text { JTbin } \\ & 2 \phi \text { na } \end{aligned}$ |  |  |
| clamp．tionsom | $\begin{aligned} & \$ \$ .0 \$ \\ & \text { DS } 60 \\ & 1510 \\ & 15 \cdot 00 \\ & 0.060 \end{aligned}$ | $\begin{aligned} & 10 \mathrm{hh} \\ & 14 \mathrm{~h} \\ & 21 \mathrm{~h} \\ & 28 \mathrm{~h} \\ & 18 \mathrm{~h} \end{aligned}$ | $10^{2}, 1020 \mathrm{max}$ |  | $10 \%$ |
|  |  | J8\％ |  |  |  |
| Thip relanei |  | $\begin{aligned} & 24 M 12 \\ & 2 \mathbb{1 M} \cdot 20 \\ & 12 \mathrm{~m}+15 \end{aligned}$ | 25\％ 10 行mat |  | 25\％ |
|  | OT．O！ | TAN |  |  |  |
| Fratmal | ג1｜（eyper | 2 l | 2 |  |  |
| Trane．briciilis |  | $\stackrel{N}{4}$ <br>  <br> $64+2$ <br> $\mathbf{4} \mathbf{4}+\mathbf{4}$ <br> 1） $\mathrm{M}+3$ | 3\％\％ | $\begin{aligned} & 9114 \sqrt{1} \\ & 13(150-160 \mid \end{aligned}$ | $15 ?$ |








Table A－／I Material requirements of the standard－design deck－type panel bridges

| ！$\ddagger$ |  | USE |  |  |  |  | SIMGIE stût deck tife gelacir <br> CAM｜NAIED ISMEER DCK <br>  |  |  |  | tatr RED Dismen Utck <br>  |  |  |  | me pavie．eridge dect |  |  |  |  LaMINALED LUMEEF DECM <br>  |  |  |  | LAYPRE |  | mese DIC TMO END HRYS |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | hubiege R（－ GURAED | foride WflCHT रोषा | Numetich RE \｛（illiEfil | ｜倍新 HEDST ！ |  | roTh －ICHI <br> （ll） | MปฟロEf <br> RE． <br> Gu4tro | folat WIICHT细 | MuWEE H SE． qZIBIRFII | $\begin{aligned} & \text { 101AL } \\ & \text { WCIGIII } \end{aligned}$ $\|\cdot\| \cdot \mid$ |  <br> HE． <br> （DU）RED | TOTAL <br>  ill！ |  | TOTML wFi＝h ｜lib； |  | $\text { 1 } 1 \text { br }$ |  | potal wfichr 116： | number hL－ Duther | $\operatorname{Tim}_{\operatorname{MEPA} \mid}$ Iubit | ＊） <br> H！ 0M1：RCD | ום וاוֹ | ＊umbit ＊ E － pllitel | IGIM1 WFIITHT l：ki |
| Anuc，123 | 173 | Aresing lea timber Thool |  |  |  |  | 2 | 348 | 5 | ss | 1 | ${ }^{346}$ | 5 | ${ }^{965}$ |  |  |  |  | $?$ | 34 | \％ | ${ }^{163}$ | ？ | \＄45 | 5 | 965 |
| Anve． $5 \times 3784 \times 796$ | 212 | Cross bracing |  |  |  |  |  |  |  | 424 |  | 212 | 2 | 174 |  |  |  |  | 1 | 317 | \％ | 14 | 1 | 71 | 2 | 126 |
|  | ${ }^{234}$ | Crass bracinc wimute | 1 | 234 | 1 | 468 |  |  |  |  |  |  |  |  | 1 | 336 | z | 45 |  |  |  |  |  |  |  |  |
| Bistint | ${ }_{6}$ | End beslint |  |  | 36 | 2.040 |  |  | 30 | 2.044 |  |  | 50 | 7.040 |  |  | נ | 240 |  |  | 3 | 2，040 |  |  | 36 | 8.040 |
| Bolt，cody | 2.19 | Rinesnd，Leminited and ligeved deck |  |  |  |  | ！ | 11 |  |  | 3 | 1 | 2 | 44 |  |  |  |  | $\square$ | t | 20 | 4 | － | 18 | 20 | 4 |
| Bolt．MExint | 1 | paxilige fiames | 40 | 40 | 16 | 19 | 4 | 40 | 0 | $\omega$ | 4 | 10 | $\omega$ | 40 | $t 0$ | 日 | 41 | 40 | 0 | ${ }_{00}$ | 16 | 40 | 50 | во | 40 | 40 |
| Eoll，ubuana | 1.5 | Riblund．mand brae kect | 16 | 24 | 12 | 4 |  |  |  |  |  |  |  |  | 15 | 14 | 32 | 5 |  |  |  |  |  |  |  |  |
| Chess．Mz | 65 |  | 26 | 1.6910 | 52 | ${ }^{3} .180$ |  |  |  |  |  |  |  |  | 76 | 1.65 | 32 | 1.158 |  |  |  |  |  |  |  |  |
| frame tasma | 43.6 |  | 10 | 435 | 10 | 435 | 10 | 436 | 14 | 416 | 10 | 4.36 | 10 | ${ }^{46}$ | 20 | \％ | 10 | 46 | 20 | 6） | 10 | 936 | 20 | 67 | 10 | 4 |
| Siatre ald | －1\％ | Mon suritice | 80 | $1{ }^{1}$ | 480 | 2 a | 240 | 14 | 480 | 23 | 240 | 14 | 40 | ${ }^{28}$ | 20 | 14 | ＊sto | 7 | 249 | 1 | 860 | 21 | $24 \%$ | 14 | 480 | 7 |
| Hall， 60 d | 1：10 | Immbe thar |  |  |  |  | ${ }^{206}$ | 19 | 100 | 38 | ${ }^{265}$ | 25 | 532 | 5 |  |  |  |  | 20 | 19 | 400 | 18 | 266 | 25 | 532 | 51 |
| Panel | 577 | Putasts | 15 | 4.655 | 30 | 17.10 | 15 | 1.65 | 30 | 17316 | 15 | 163） | 30 | 12．310 | 30 | 17，110 | ${ }^{30}$ | 12，310 | 30 | 17．310 | 10 | 17.319 | 10 | 17310 | 30 | 17．316 |
| Pin．pwin wirnalar clip | ${ }_{1895}^{673}$ | Paweis ind and pasis | 10 | 348 | ${ }^{90}$ | 399 | 30 | 14 | 90 | 199 | 13 | 146 | 9 | 539 | to | 17 | ${ }^{615}$ | 172 | 6 | 12 | $6{ }^{60}$ | 372 | 60 | n | 6 | $3{ }^{3}$ |
| Post．Im．Itmate | 1895 | Ead ol ituses |  |  | 15 | 2.92 |  |  | ${ }^{5}$ | 1.942 |  |  | 13 | 192 |  |  | 15 | เ．1．42 |  |  | 13 | 1.947 |  |  | 15 | 1．42 |
| Porl．erd．wale | 173 |  |  |  | 15 | 1.413 |  |  | 15 | 1.8189 |  |  | 15 | 1515 |  |  | 15 | L，415 |  |  | 15 | 1.185 |  |  | 13 | 1.15 |
| ${ }^{\text {Altasma} \text { ，sleer }}$ | ${ }_{215}$ | Cubs | 1 | ${ }^{3650}$ | 8 | 1.120 | 4 | 150 | 3 | 1.720 | 4 | 80 | 9 | 1710 | 4 | 156 | 8 | 1.720 | 4 | 30 | a | 1.780 | 4 | 151 | 日 | 1.720 |
| Sluncter．Sutica | 2 | Deck | 4 | 1.065 | ， | 2.176 |  |  |  |  |  |  |  |  | 4 | 1.068 | ＊ | 2.136 |  |  |  |  |  |  |  |  |
| Stungr，প1an | ${ }_{50}{ }^{2} 5$ | $0^{\text {Oek }}$ | ＋ | 2.006 | 1 | 4，160 |  |  |  |  |  |  |  |  | $\varepsilon$ | 7.080 | 16 | d． 160 |  |  |  |  |  |  |  |  |
|  | 525 | Lutinglod deat |  |  |  |  | ${ }^{4}$ | 2．19） | ${ }^{30}$ | 4.200 |  |  |  |  |  |  |  |  | 4 | 2.100 | 的 | 4，700 |  |  |  |  |
|  | 8 | Wear Eathat | ${ }^{16}$ | 1400 | 32 | 2.900 | ${ }^{16}$ | 100 | 12 | 2.800 | ${ }^{16}$ | 1.406 | 32 | 2.800 | 16 | 1.000 | \％ | 2.800 | 16 | 1.8000 | 8 | 2.000 | 16 | L．409 | 2 |  |
| liaba 5in2xly | 105 | Beltor lyer of laverd deck |  |  |  |  |  |  |  |  | 10 | 1.050 | 70 | 2.100 |  |  |  |  |  |  |  |  | 18 | 1．050 | 20 | 1.100 |
| ${ }_{\text {lin }}$ | ${ }^{13} 18$ |  | 4 | 247 |  | 4.95 |  |  |  |  |  | 2.142 | 28 | 4，244 | 4 |  |  |  |  |  |  |  | 14 | 2.142 | ${ }^{2}$ | 4，244 |
|  |  |  |  |  |  | 4.44 |  |  |  |  |  | 15，964 |  | 35.458 |  | （478 |  |  |  |  |  |  |  |  |  |  |
|  |  | ${ }_{\text {coser }}$ |  | 0.6 |  | 22.2 |  | 1 |  | 17.6 |  | 77 |  | 12： |  | 14.7 |  | 2.1 |  | 1. |  | ${ }_{170}$ |  | ${ }_{\text {12．}}$ |  | 36，14．1 |



| bTRATION | Tilbee Rivier, Borghath, Hisly | Autcbahn haghway, Bayr eulh. Germany | Anto River, Plsa llaly | Po Rlver, Ostogien, italy |
| :---: | :---: | :---: | :---: | :---: |
| 3Frn |  $70^{\circ}>10480$ |  | Lantinutiot owt [me Es splas | Ceminutus ortio initeen 100 5pans |
| Capacily |  |  |  |  |
|  Ter wis | Class 80 | Class 60 Class 45 | Uningum | Clase 160 |
| Rutar midit III) | 24 | 15 | 20 | H69122 |
| TRUSS COMSITUCJIm |  bracing trames and tie plales inte <br>  | 8 trasses lied topetion by verical bracing trames hito atwo thuss einders |  bracug frames into $\$$ two hust podas |  <br>  pirents |
| Spreiml gracint |  bation chards | f. chanela ir marerst to centerdint of bridge wilked to top and bellom (Hypuls at 20' sacinep |  across tap cheods al t'6' saciags | Aryle cuativiciant mided undar botiont chouds |
| DECK |  ships bolted In Inseses; botere? layers bid dugcealh, lapt tyyet lald transuessely, and serfaced tilt bilumanass surfarey | Y 10oring *rided to nawnus strips bolked in Intres | 2 lpers al 9' tinter nulkd In naling straps molid id IJan heams | 2 layers of timber nalad te ailat staps balted In trusses, bellan tyer land un uwersely. top layer Lid diapowally |
| Lsunchinc | Eath givder launthed sepalatith. firmen and lanching mose pulsed on tollofs cul ona me |  | Itian unia lamehed en alikers mithoul <br>  | Each gude Mlied drectly into plact top pill-diving 4 ? |

*Capacities are those assigned to the bridge in the field; actual capacities may be greater


| Lotariou |  Heltunlar．［vila．Eincotd |  lat： | 56：13 |  |
| :---: | :---: | :---: | :---: | :---: |
| 501d <br> ciphall |  | 数 <br>  | LIO Molsman | That 51．9pum <br>  |
|  |  |  | 13 | ap－Dartim lopanay |
|  |  <br>  hafichs |  ce boon bard wo alameld swipark． <br>  misioss |  <br>  <br>  <br>  |  <br>  1815נ（5） |
| GEARITL5 <br>  <br>  | 5latialc afo pos．barotalircs | 5imatictigiala ely jew mis |  |  50455 <br>  <br>  |
| Shune Rifenenti | 13.12 | 131］ | 13 14 | ［］．13 |
|  |  |  | Dudica muti wait ci milaion Fidict |  |
| 51plu |  | 130 onslity and |  <br>  |  <br>  |
| Gmpabiry |  |  t］Ion calg arhat licyropar |  | Mralini［ajait E du |
|  <br> Batail4c |  |  Broifildrat indily owes |  <br>  cort bacirg mith la phow byllus： <br>  cruas doaletil it patal rotiolds |  <br>  tratp Hithe milini atan Irutur |
| blcainis | Tren al 14 gainiz ming larn it <br>  dable lizesins |  llutar |  <br>  |  |
| Eenerimis |  |  <br>  atúprils | 14T0＋1 bejurip |  <br>  14 （15 |
| goustiarilitan liar <br>  | S 5 <br> $12 t$ lenertad mill 30 name ran an <br>  | ${ }^{2} 13 \mathrm{arb}$ <br>  treirg eitid alial livien mis is plati | 5 Laph <br>  |  <br>  Ef |
| F｜r | 1．15 |  | 1 |  |
| uecrloun |  ［110 | 〔chlis | Entun Sad | Nutip．Fomit |
| bran <br> ［apuciut <br> huldeatif 1kJsces <br> BlW゙しない |  Hoonet calpal it if <br>  <br>  <br>  I |  <br> minlud Cowper s L－49 <br> 5 liverss <br>  <br>  | W <br>  <br> IV ifurbs <br>  shat brory mibed uatm libilit |  <br>  <br>  <br>  <br>  <br>  sdpand lo paral arikide |
| DCCLAM <br> BLA진․ 5 |  <br>  ｜intiv＇Muragi |  Нинम： | lea al 26 ventert itard biliod is Iruthi <br>  <br>  <br>  |  <br>  linber beunray |
|  <br>  | 13．311 <br>  |  <br>  <br>  <br>  | 14 dys <br>  <br>  exat inury leweling anip |  |
| higumi hefilitaç | 13.27 |  |  |  |
| Lecal in |  | Lank Frocke |  |  |
|  |  <br>  <br> ！ 10 Yisstr ficword nig ial j－Inutr |  <br>  <br> ｜livines |  |  |
| BIATHET | 18 row <br>  <br>  <br>  nexded ia hak and townitoris $\cdot \mathrm{n}$ WHOM |  <br>  1141445 |  |  |
| 0¢tisai |  lluivi <br>  scurtl ifl as lirber pal cafr，mind <br>  |  l－iters <br>  <br>  awe pilla，ditabiliti zunitelis at <br>  blwen antif plidy |  |  |
| AhSIRLKITOH TWE <br>  | N Jimb <br>  mot．ont Uuithitg atst pulat amgs brymin | 19（m） <br>  <br>  on＇t wit |  |  |



| PARI | LOAD | 51月tHCFH IIDMS. | ILIUSIRAIIOM | |
|---|---|---|---|---|
| Span 147c lar pat | ili shear aczoss monl | $\therefore$ |  |
|  |  bersing atrn Lidecint دipl Wh II sir pobrlith *ih 10 <br>  <br>  | 113) 11. <br> 1075 $\begin{gathered} 36011 \\ 10 \mathrm{c}: 5 \end{gathered}$ |  |
|  | 1] litetizal lasd | 13 |  |
| 2unclan. lıAh Eidimic | id: Latat at cenled phan tapparied al ends orly <br> 151, E\$t at cailti when EL4 <br>  | 24 |  |
| Crib [495.4 | \|E| When suppirlisd il enots and cer-iter raisloiced rates wilh load an lap inleimediqip ranigured roler | 9 |  |
|  | ; ${ }^{1}$ 四hen gupesilen ar atta Noptale leaill gitid hites \#ilh <br>  nutrs | 12 |  |
|  | \|l|Witl stppoikde' enl 4al temer reunluized tulat mith diskiblied loud | 11 |  |
|  |  enl at leagith br atatichsed with loid sh twe tentitl leq larzed maled | 17 |  |
|  |  anilrortid halas | 11 |  |
| Cunudismis | 1JI: Fancior | 17 | IJ. |
|  |  |  |  |




PIN: 059910-000


[^0]:    or
    
    

[^1]:    manner and spike the ties to the chess Figure 13-5). By building up timber treads on each side and between the rails, the bridge can be used for rail or highway traffic (Figure 13-6). To reduce impact, rail joints on the bridge should be tight, with no allowance for expansion.

[^2]:    12010. 

    
    

[^3]:    Fignic is 54 MS Balley bridgte jached downt on bridete bearins prote

[^4]:    
    mas:
    twhy
    

[^5]:    fïnure 17 12 C'rib beqpng bnder crib caprilf

[^6]:    
    
    

[^7]:    double-qingie $=3.41$ tons ( 3.1 metrictont) singie-sinatic 2.76 tona ( 2.5 metric toant) Difference: 0.65 tons ( 0.59 metric ton)

